Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 168: 112691, 2023 06.
Article in English | MEDLINE | ID: mdl-37120186

ABSTRACT

Bisifusarium domesticum is among the main molds used during cheese-making for its "anticollanti" property that prevents the sticky smear defect of some cheeses. Previously, numerous cheese rinds were sampled to create a working collection and not only did we isolate B. domesticum but we observed a completely unexpected diversity of "Fusarium-like" fungi belonging to the Nectriaceae family. Four novel cheese-associated species belonging to two genera were described: Bisifusarium allantoides, Bisifusarium penicilloides, Longinectria lagenoides, and Longinectria verticilliformis. In this study, we thus aimed at determining their potential functional impact during cheese-making by evaluating their lipolytic and proteolytic activities as well as their capacity to produce volatile (HS-Trap GC-MS) and non-volatile secondary metabolites (HPLC & LC-Q-TOF). While all isolates were proteolytic and lipolytic, higher activities were observed at 12 °C for several B. domesticum, B. penicilloides and L. lagenoides isolates, which is in agreement with typical cheese ripening conditions. Using volatilomics, we identified multiple cheese-related compounds, especially ketones and alcohols. B. domesticum and B. penicilloides isolates showed higher aromatic potential although compounds of interest were also produced by B. allantoides and L. lagenoides. These species were also lipid producers. Finally, an untargeted extrolite analysis suggested a safety status of these strains as no known mycotoxins were produced and revealed the production of potential novel secondary metabolites. Biopreservation tests performed with B. domesticum suggested that it may be an interesting candidate for biopreservation applications in the cheese industry in the future.


Subject(s)
Cheese , Fusarium , Cheese/analysis , Alcohols/analysis , Gas Chromatography-Mass Spectrometry
2.
Int J Food Microbiol ; 364: 109509, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35030441

ABSTRACT

Nectriaceae species have been described in various natural environments or as plant or human pathogens. Within this family, the Bisifusarium domesticum species is of particular interest for food mycologists as it is used for technological functions in various cheese productions. Moreover, it has only been isolated from the cheese environment so far and, until recently, was the only Nectriaceae species described in this food product. Recently, four novel cheese-associated Nectriaceae species have been described, including two associated to the Bisifusarium genus and two to a new genus, Longinectria gen. nov.. These observations raise questions concerning the potential adaptation of these species to the cheese environment. In this context, this study first focused on determining the impact of abiotic factors on the growth of isolates belonging to the five cheese-associated species (i.e. B. allantoides sp. nov., B. domesticum, B. penicilloides sp. nov., L. lagenoides gen. nov. sp. nov. and L. verticilliforme gen. nov. sp. nov.) but also included phylogenetically close species. To do so, fungal growth kinetics in liquid medium (Potato Dextrose Broth) were determined by laser nephelometry at different temperatures, pH and water activities using NaCl as a depressor. Growth modeling was then performed to estimate cardinal values for each abiotic factor. Secondly, fungal growth was also evaluated on Potato Dextrose Agar (synthetic medium), cheese agar (cheese-mimicking medium) and Raclette de Savoie cheese (actual cheese). Our results clearly highlighted physiological differences in growth characteristics between the studied cheese-associated Nectriaceae spp. and the "non-cheese" species which could suggest, for the former, an adaptation to this food matrix. Indeed, regarding the impact of the tested abiotic factors, statistical analyses confirmed this dichotomy, with for example the lowest optimal temperatures estimated for the cheese-associated species (Topt 19.1-23.1 °C) while the other Bisifusarium species exhibited the highest optimal temperatures (Topt 26.1-36.2 °C). As for the impact of growth media, radial growth measurements highlighted that B. domesticum was the least affected species for growth on Raclette de Savoie and even grew faster on cheese agar than on synthetic medium confirming its strong adaptation to the cheese environment.


Subject(s)
Cheese , Adaptation, Physiological , Culture Media , DNA, Bacterial , Fungi , Humans , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Water
3.
Food Res Int ; 147: 110549, 2021 09.
Article in English | MEDLINE | ID: mdl-34399526

ABSTRACT

Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.


Subject(s)
Microbial Consortia , Microbiota , Acetobacter , Biofilms , Brettanomyces , Fermentation , Hanseniaspora
SELECTION OF CITATIONS
SEARCH DETAIL
...