Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters











Publication year range
1.
Chem Sci ; 10(22): 5656-5666, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31293750

ABSTRACT

The two main types of charge storage devices - batteries and double layer charging capacitors - can be unambiguously distinguished from one another by the shape and scan rate dependence of their cyclic voltammetric current-potential (CV) responses. This is not the case with "pseudocapacitors" and with the notion of "pseudocapacitance", as originally put forward by Conway et al. After insisting on the necessity of precisely defining "pseudocapacitance" as involving faradaic processes and having, at the same time, a capacitive signature, we discuss the modelling of "pseudocapacitive" responses, revisiting Conway's derivations and analysing critically the other contributions to the subject, leading unmistakably to the conclusion that "pseudocapacitors" are actually true capacitors and that "pseudocapacitance" is a basically incorrect notion. Taking cobalt oxide films as a tutorial example, we describe the way in which a (true) electrical double layer is built upon oxidation of the film in its insulating state up to an ohmic conducting state. The lessons drawn at this occasion are used to re-examine the classical oxides, RuO2, MnO2, TiO2, Nb2O5 and other examples of putative "pseudocapacitive" materials. Addressing the dynamics of charge storage-a key issue in the practice of power of the energy storage device-it is shown that ohmic potential drop in the pores is the governing factor rather than counter-ion diffusion as often asserted, based on incorrect diagnosis by means of scan rate variations in CV studies.

2.
ACS Appl Mater Interfaces ; 11(32): 28769-28773, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31311266

ABSTRACT

The transition between the insulator state and the band-conducting state is investigated by means of cyclic voltammetry in cobalt oxide porous film electrodes in phosphate-buffered solutions. It is shown that a proton-coupled faradaic oxidative process starting in the insulator region eventually builds an ohmic conduction mode upon anodic polarization. This model allows one to understand the origin of the authentic capacitive behavior of conductive metal oxide films rather than the so-called "pseudocapacitive" behavior. The particular example of cobalt oxide serves to illustrate the way in which, more generally, the behavior of "pseudocapacitors", long ascribed to the superposition of faradaic reactions, is in fact that of true capacitors, once band-conduction has been established upon oxidation of the material.

3.
Proc Natl Acad Sci U S A ; 116(23): 11147-11152, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31101717

ABSTRACT

As an accompaniment to the current renaissance of synthetic organic electrochemistry, the heterogeneous and space-dependent nature of electrochemical reactions is analyzed in detail. The reactions that follow the initial electron transfer step and yield the products are intimately coupled with reactant transport. Depiction of the ensuing reactions profiles is the key to the mechanism and selectivity parameters. Analysis is eased by the steady state resulting from coupling of diffusion with convection forced by solution stirring or circulation. Homogeneous molecular catalysis of organic electrochemical reactions of the redox or chemical type may be treated in the same manner. The same benchmarking procedures recently developed for the activation of small molecules in the context of modern energy challenges lead to the establishment and comparison of the catalytic Tafel plots. At the very opposite, redox-neutral chemical reactions may be catalyzed by injection (or removal) of an electron from the electrode. This class of reactions has currently few, but very thoroughly analyzed, examples. It is likely that new cases will emerge in the near future.

4.
Chem Sci ; 11(4): 1006-1010, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-34084355

ABSTRACT

A recent remarkable study of the C-H oxidation of substituted fluorenyl-benzoates together with the transfer of a proton to an internal receiving group by means of electron transfer outer-sphere oxidants, in the noteworthy absence of hydrogen-bonding interactions, is taken as an example to uncover the existence of a mechanism crossover, making the reaction pass from a CPET pathway to a PTET pathway as the driving force of the global reaction decreases. This was also the occasion to stress that considerations based on "imbalanced" or "asynchronous" transition states cannot replace activation/driving force models based on the quantum mechanical treatment of both electrons and transferring protons.

5.
Angew Chem Int Ed Engl ; 58(7): 2125-2128, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30548762

ABSTRACT

Homogeneous catalysis of electrochemical reactions, related to contemporary energy challenges, often involves proton-coupled electron transfer sequences. The idea rapidly emerged that installing the proton donor (for reductions, or acceptor for oxidations) inside the catalyst molecule should be beneficial in terms of efficiency, as it would then be closer to the nerve center of the process (usually the metal in the case of transition metal complex catalysts). If this proton relay has indeed done the job, it has lost its proton at the end of each catalytic loop, and must therefore be reprotonated (for reductions, or deprotonated for oxidations) from acid (or base) from the solution before a new catalytic loop can start. The impression may thus be that there is a zero-sum game. The conditions under which this is not the case may entail, in contrast, a considerable boosting of catalysis. This will also allow explain why the proton is such a specifically appropriate agent for this task.

6.
J Am Chem Soc ; 140(48): 16669-16675, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30392356

ABSTRACT

Benchmarking and optimization of molecular catalysts for electrochemical reactions have become central issues in the efforts to match contemporary renewable energy challenges. In view of some confusion in the field, we precisely define the notions and parameters (potentials, overpotentials, turnover frequencies) involved in the accomplishment of these objectives and examine the correlations that may link them, thermodynamically and/or kinetically to each other (catalytic Tafel plots, scaling relationships, "iron laws"). To develop this tutorial section, we have picked as the model catalytic reaction scheme a moderately complex mechanism, general enough to illustrate the essential issues to be encountered and sufficiently simple to avoid the algebraic nightmare that a systematic study of all possible pathways would entail. The notion of scaling relations will be the object of particular attention, having notably in mind the delimitation of their domain of applicability. At this occasion, emphasis will be put on the necessity of clearly separating what is relevant to intrinsic characteristics (through standard quantities) to what deals with the effect of varying the reactant concentrations. It will be also stressed that the occurrence of such scaling relations, otherwise named "iron laws", is not a general phenomenon but rather concerns families of catalysts. Likewise, the search of a general correlation between the maximal turnover frequency and the equilibrium free energy of the electrochemical reaction appears as irrelevant and misleading. This general analysis will then be illustrated by experimental data previously obtained with the O2-to-H2O conversion catalyzed by ironIII/II porphyrins in N, N'-dimethylformamide in the presence of Brönsted acids.

7.
Proc Natl Acad Sci U S A ; 115(37): 9104-9109, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30143579

ABSTRACT

The world of coordination complexes is currently stimulated by the quest for efficient catalysts for the electrochemical reactions underlying modern energy and environmental challenges. Even in the case of a multielectron-multistep process, catalysis starts with uptake or removal of one electron from the resting state of the catalyst. If this first step is an outer-sphere electron transfer (triggering a "redox catalysis" process), the electron distribution over the metal and the ligand is of minor importance. This is no longer the case with "chemical catalysis," in which the active catalyst reacts with the substrate in an inner-sphere manner, often involving the transient formation of a catalyst-substrate adduct. The fact that, in most cases, the ligand is "noninnocent," in the sense that the electron density and charge gained (or removed) from the resting state of the catalyst are shared between the metal and the ligand, has become common-place knowledge over the last half-century. Insistent focus on a large degree of noninnocence of the ligand in the resting state of the catalyst, even robustly validated by spectroscopic techniques, may lead to undermining the essential role of the metal when such essential issues as kinetics, mechanisms, and product selectivity are dealt with. These points are general in scope, but their discussion is eased by adequately documented examples. This is the case for reactions involving metalloporphyrins as well as vitamin B12 derivatives and similar cobalt complexes for which a wealth of experimental data is available.

8.
J Am Chem Soc ; 139(39): 13922-13928, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28892610

ABSTRACT

In the framework of modern energy challenges, the reduction of CO2 into fuels calls for electrogenerated low-valent transition metal complexes catalysts designed with considerable ingenuity and sophistication. For this reason, the report that a molecule as simple as protonated pyridine (PyH+) could catalyze the formation of methanol from the reduction of CO2 on a platinum electrode triggered great interest and excitement. Further investigations revealed that no methanol is produced. It appears that CO2 is not really reduced but rather participates, on the basis of its aquation into carbonic acid, in hydrogen evolution. Actually, the situation is not that straightforward, as revealed by scrutinizing what happens at the platinum electrode surface. The present study confirms the lack of methanol formation upon bulk electrolysis of PyH+ solutions at Pt and provides a detailed account of the Faradaic yield for H2 production as a function of the electrode potential, but the main finding is that CO2 reduction is accompanied by a strong inhibition of the electrode process taking place when it is carried out in the presence of acids such as PyH+ and AcOH. Cyclic voltammetry and in situ infrared spectroscopy were closely combined to investigate and understand the nature and consequences of the inhibition process. Constant comparison between the two acids was required to decipher the course of the reaction owing to the fact that the IR responses are perturbed by PyH+ adsorption. It finally appears that inhibition is caused by the reduction of CO2 into CO, whose high affinity with platinum triggers the formation of a Pt-CO film that prevents the reaction process. Thus, a paradoxical situation develops in which the high affinity of Pt for CO helps to decrease the overpotential for the reduction of CO2 and therefore blocks the electrode, preventing the reaction process.

9.
Nat Mater ; 16(10): 1016-1021, 2017 10.
Article in English | MEDLINE | ID: mdl-28825730

ABSTRACT

In the active interest aroused by electrochemical reactions' catalysis, related to modern energy challenges, films deposited on electrodes are often preferred to homogeneous catalysts. A particularly promising variety of such films, in terms of efficiency and selectivity, is offered by sprinkling catalytic nanoparticles onto a conductive network. Coupled with the catalytic reaction, the competitive occurrence of various modes of substrate diffusion-diffusion toward nanoparticles ('nanodiffusion') against film linear diffusion and solution linear diffusion-is analysed theoretically. It is governed by a dimensionless parameter that contains all the experimental factors, thus allowing one to single out the conditions in which nanodiffusion is the dominant mode of mass transport. These theoretical predictions are illustrated experimentally by proton reduction on a mixture of platinum nanoparticles and carbon dispersed in a Nafion film deposited on a glassy carbon electrode. The density of nanoparticles and the scan rate are used as experimental variables to test the theory.

10.
J Am Chem Soc ; 139(24): 8245-8250, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28460524

ABSTRACT

Modern energy challenges currently trigger an intense interest in catalysis of redox reactions-electrochemical and photochemical-particularly those involving small molecules such as water, hydrogen, oxygen, proton, carbon dioxide. A continuously increasing number of molecular catalysts of these reactions, mostly transition metal complexes, have been proposed, rendering necessary procedures for their rational benchmarking and fueling the quest for leading principles that could inspire the design of improved catalysts. The search of "volcano plots" correlating catalysis kinetics to the stability of the key intermediate is a popular approach to the question in catalysis by surface-active sites, with as foremost example the electrochemical reduction of aqueous proton on metal surfaces. We discussed here for the first time, on theoretical and experimental grounds, the pertinence of such an approach in the field of molecular catalysis. This is the occasion to insist on the virtue of careful mechanism assignments. Particular emphasis is put on the interest of expressing the catalysts' intrinsic kinetic properties by means of catalytic Tafel plots, which relate kinetics and overpotential. We also underscore that the principle and strategies put forward for the catalytic activation of the above-mentioned small molecules are general as illustrated by catalytic applications out of this particular field.

SELECTION OF CITATIONS
SEARCH DETAIL