Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Front Physiol ; 14: 1250744, 2023.
Article in English | MEDLINE | ID: mdl-37501929

ABSTRACT

[This corrects the article DOI: 10.3389/fphys.2023.1230752.].

4.
Front Physiol ; 14: 1085545, 2023.
Article in English | MEDLINE | ID: mdl-36875039

ABSTRACT

This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.

5.
Front Physiol ; 13: 921862, 2022.
Article in English | MEDLINE | ID: mdl-35784861

ABSTRACT

Space technologies greatly contributed not only to space medicine but also to terrestrial medicine, which actively involves these technologies in everyday practice. Based on the existing countermeasures, and due to similarities of sensorimotor alterations provoked by the weightlessness with various neurological disorders, a lot of work has been dedicated to adaptation and introduction of these countermeasures for rehabilitation of patients. Axial loading suit and mechanical stimulation of the soles' support zones are used in mitigation of stroke and traumatic brain injury consequences. They are also applied for rehabilitation of children with cerebral palsy. Complex application of these proprioceptive correction methods in neurorehabilitation programs makes it possible to effectively treat neurological patients with severe motor disturbances and significant brain damage.

6.
Front Physiol ; 12: 661959, 2021.
Article in English | MEDLINE | ID: mdl-34194336

ABSTRACT

This article describes procedures and some results of the first study of females undergoing 3-day Dry Immersion. The experiment "NAIAD-2020" was carried out at the Institute of Biomedical Problems (Moscow, Russia) with the participation of six healthy women volunteers (age 30.17 ± 5.5 years, height 1.66 ± 0.1 m, weight 62.05 ± 8.4 kg, BMI 22.39 ± 2.2 kg/m2) with a natural menstrual cycle. During the study, a standard protocol was used, the same as for men, with a minimum period of time spent outside the immersion bath. Before, during and after Immersion, 22 experiments were carried out aimed at studying the neurophysiological, functional, metabolic and psychophysiological functions of the body, the results of which will be presented in future publications. The total time outside the bath for women did not exceed that for men. Systolic and diastolic pressure did not significantly change during the immersion. In the first 24 h after the end of the immersion, heart rate was significantly higher than the background values [F(4,20) = 14.67; P < 0.0001]. Changes in body temperature and water balance were consistent with the patterns found in men. No significant changes in height and weight were found during immersion. All women reported general discomfort and pain in the abdomen and back. The results of this study did not find significant risks to women's health and showed the feasibility of using this model of the effects of space flight in women of reproductive age.

7.
Front Physiol ; 12: 661922, 2021.
Article in English | MEDLINE | ID: mdl-34025451

ABSTRACT

A decrease in muscle tone induced by space flight requires a standardized assessment of changes to control the state of the neuromuscular system. This study is a step toward the development of a unified protocol, aimed at determining the initial effect of the presence or withdrawal of support on muscle tone, the effects of a 2-h supportlessness in Dry Immersion (DI) experiments, and the changes in muscle tone depending on the site of measurement. To perform measurements of changes in muscle tone, we used a MyotonPRO device. The list of muscles that we assessed includes: trunk - mm. deltoideus posterior, trapezius, erector spinae; leg - mm. biceps femoris, rectus femoris, tibialis anterior, soleus, gastrocnemius; foot - m. flexor digitorum brevis, tendo Achillis, aponeurosis plantaris. The study involved 12 healthy volunteers (6 men, 6 women) without musculoskeletal disorders and aged 32.8 ± 1.6 years. At the start of DI, there was a significant decrease in muscle tone of the following muscles: mm. tibialis anterior (-10.9%), soleus (-9.6%), erector spinae (-14.4%), and the tendo Achillis (-15.3%). The decrease continued to intensify over the next 2 h. In contrast, the gastrocnemius muscle demonstrated an increase in muscle tone (+7.5%) 2 h after the start of DI compared to the immediate in-bath baseline. Muscle tone values were found to be site-dependent and varied in different projections of mm. erector spinae and soleus. In previous experiments, we observed a high sensitivity of the myotonometry technique, which was confirmed in this study. To make it possible to compare data from different studies, a standardized protocol for measuring muscle tone for general use in gravitational physiology needs to be developed.

8.
Sci Rep ; 11(1): 6232, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737674

ABSTRACT

16 participants have been subjected to Dry Immersion model (DI) for 5 days. DI reproduces the space flight factors such as lack of support, mechanical and axial unloading, physical inactivity, elimination of vertical vascular gradient. Long-term bed rest is also associated with similar factors, so the results of the study may be useful for clinical medicine. Computer plantography and measuring the stiffness of the soft tissues of the foot and superficial muscles of the shin (mm. tibialis anterior and peroneus longus) were performed twice before DI exposure, on the 2nd and 4th days of DI exposure, as well as on the 2nd day of the recovery period. DI exposure effects the parameters under study in two ways: by raising the longitudinal arch and by flattening the transverse arch, which is accompanied by a decrease in the soft tissues stiffness of the foot and superficial muscles of the shin. The work reveals the phenomenon of compensating the longitudinal arch state by changing the characteristics that reflect the transverse arch state. The results of the study for the first time demonstrate the correlation of the foot morphological characteristics with a decrease in stiffness of mm. peroneus longus and tibialis anterior.


Subject(s)
Hindlimb Suspension/methods , Muscle, Skeletal/physiology , Sedentary Behavior , Weightlessness Simulation , Adult , Biomechanical Phenomena , Foot , Hindlimb Suspension/instrumentation , Humans , Male
9.
Front Hum Neurosci ; 15: 742664, 2021.
Article in English | MEDLINE | ID: mdl-35095445

ABSTRACT

The aim of the experiment was to evaluate the adaptive responses of biomechanical and electromyographic parameters to vertical unloading (Lunar-0.15 G and Martian-0.35 G) when walking during the 4-month isolation experiment SIRIUS-19 in the ground-based space station model (GBI). The study involved 6 healthy international crew members of the SIRIUS-19 project aged 34 ± 6.2 years (3 women and 3 men). Body Weight Unloading (BWU) conditions was created by the h/p/cosmos airwalk system. The locomotor test included walking (3.5 ± 0.3 km/h) with a sequential change of BWU modes: 5-min walking with 0% BWU (1 G), 5-min walking with 65% BWU (0.35 G) and 5-min walking with 85% BWU (0.15 G). Ground Reaction Force was recorded by the h/p/cosmos treadmill device. Muscle Lab Model 4000e device was used to record the electromyographic signals of the hip and shin muscles. The locomotor test was performed twice before GBI, monthly during GBI and 1 week after leaving isolation. The results obtained before GBI demonstrate that the changes of support and proprioceptive afferentation signals play significant role in reorganizing of the biomechanical structure of motor acts and the development of new movement patterns. The results of the study are consistent with the previously obtained results of other studies in this direction. Despite the fact that during the GBI the participants of the experiment performed regular physical training, a decrease in the performance indicators values was detected, especially pronounced after 100 days of GBI. This is probably due to limited space of a space station model, as well as the development of a special motor stereotype in it. Noteworthy are the results obtained after the 4th session of the experiment, indicating the effect of sensorimotor learning. We think that the data obtained in this study will be useful in research both in gravitational physiology and in clinical medicine.

10.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008893

ABSTRACT

Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.


Subject(s)
Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Disorders, Atrophic/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL