Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(3): 1000-1017, 2024 May.
Article in English | MEDLINE | ID: mdl-38433329

ABSTRACT

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Subject(s)
Coleoptera , Picea , Weevils , Animals , Droughts , Picea/microbiology , Plant Bark/chemistry , Plant Diseases/microbiology , Terpenes , Phenols , Norway , Water/analysis , Carbohydrates/analysis
2.
AoB Plants ; 15(2): plad001, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36959914

ABSTRACT

Leaves grown at different light intensities exhibit considerable differences in physiology, morphology and anatomy. Because plant leaves develop over three dimensions, analyses of the leaf structure should account for differences in lengths, surfaces, as well as volumes. In this manuscript, we set out to disentangle the mesophyll surface area available for diffusion per leaf area (S m,LA) into underlying one-, two- and three-dimensional components. This allowed us to estimate the contribution of each component to S m,LA, a whole-leaf trait known to link structure and function. We introduce the novel concept of a 'stomatal vaporshed,' i.e. the intercellular airspace unit most closely connected to a single stoma, and use it to describe the stomata-to-diffusive-surface pathway. To illustrate our new theoretical framework, we grew two cultivars of Vitis vinifera L. under high and low light, imaged 3D leaf anatomy using microcomputed tomography (microCT) and measured leaf gas exchange. Leaves grown under high light were less porous and thicker. Our analysis showed that these two traits and the lower S m per mesophyll cell volume (S m,Vcl) in sun leaves could almost completely explain the difference in S m,LA. Further, the studied cultivars exhibited different responses in carbon assimilation per photosynthesizing cell volume (A Vcl). While Cabernet Sauvignon maintained A Vcl constant between sun and shade leaves, it was lower in Blaufränkisch sun leaves. This difference may be related to genotype-specific strategies in building the stomata-to-diffusive-surface pathway.

3.
Physiol Plant ; 173(4): 2181-2190, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34549436

ABSTRACT

Plant stress experiments are commonly performed with plants grown in containers to better control environmental conditions. Nevertheless, the container can constrain plant growth and development, and this confounding effect is generally ignored, particularly in studies on woody species. Here, we evaluate the effect of the container volume in drought experiments using grapevine as a model plant. Grapevines grown in small (7 L, S) or large (20 L, L) containers were subjected to drought stress and rewatering treatments. We monitored plant stomatal conductance (gs ), midday stem water potential (Ψs ), and photosynthetic rate (AN ) throughout the experiment. The effect of the container volume on the stem and petiole xylem anatomy, as well as on the total leaf area (LA), was assessed before drought imposition. The results showed that LA did not differ between plants in L or S containers, but S vines exhibited a higher theoretical hydraulic conductance at the petiole level. Under drought L and S similarly reduced gs and AN , but plants in S containers reached lower Ψs than those in L. Nevertheless, upon rewatering droughted plants in S containers exhibited a faster stomata re-opening than those in L, probably as a consequence of the differences in the stress degree experienced and the biochemical adjustment at the leaf level. Therefore, a suitable experimental design should consider the container volume used in relation to the desired traits to be studied for unbiased results.


Subject(s)
Dehydration , Droughts , Plant Leaves , Plant Stomata , Water , Xylem
5.
New Phytol ; 229(2): 820-830, 2021 01.
Article in English | MEDLINE | ID: mdl-32890423

ABSTRACT

In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.


Subject(s)
Droughts , Embolism , Plant Stems , Water , X-Ray Microtomography , Xylem
6.
Tree Physiol ; 40(8): 1043-1057, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32186735

ABSTRACT

Drought compromises plant's ability to replace transpired water vapor with water absorbed from the soil, leading to extensive xylem dysfunction and causing plant desiccation and death. Short-term plant responses to drought rely on stomatal closure, and on the plant's ability to recover hydraulic functioning after drought relief. We hypothesize a key role for abscisic acid (ABA) not only in the control of stomatal aperture, but also in hydraulic recovery. Young plants of Populus nigra L. were used to investigate possible relationships among ABA, non-structural carbohydrates (NSC) and xylem hydraulic function under drought and after re-watering. In Populus nigra L. plants subjected to drought, water transport efficiency and hydraulic recovery after re-watering were monitored by measuring the percentage loss of hydraulic conductivity (PLC) and stem specific hydraulic conductivity (Kstem). In the same plants ABA and NSC were quantified in wood and bark. Drought severely reduced stomatal conductance (gL) and markedly increased the PLC. Leaf and stem water potential, and stem hydraulic efficiency fully recovered within 24 h after re-watering, but gL values remained low. After re-watering, we found significant correlations between changes in ABA content and hexoses concentration both in wood and bark. Our findings suggest a role for ABA in the regulation of stem carbohydrate metabolism and starch mobilization upon drought relief, possibly promoting the restoration of xylem transport capacity.


Subject(s)
Droughts , Populus , Abscisic Acid , Carbohydrates , Plant Leaves , Plant Stomata , Plant Transpiration , Water , Xylem
7.
Plant Physiol Biochem ; 145: 1-9, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31665662

ABSTRACT

The maintenance of hydraulic function during and after a drought event is crucial for tree survival, but the importance of non-structural carbohydrates (NSCs) in the recovery phase is still debated. We tested whether higher NSC availability facilitates post-drought hydraulic recovery, by applying a short-term drought (Sdr) and a long-term drought combined with shading (Ldr+sh) in Fraxinus ornus and Ostrya carpinifolia. Plants were then re-irrigated and recovery was checked 24 h later, by measuring water potential, stem percentage loss of hydraulic conductance (PLC) and NSC content. The relative magnitude of hydraulic and carbon constraints was also assessed in desiccated plants. During drought, PLC increased only in F. ornus, while it was maintained almost constant in O. carpinifolia due to tighter stomatal control of xylem pressure (i.e. more isohydric). In F. ornus, only Sdr plants maintained high NSC contents at the end of drought and, when re-irrigated, recovered PLC to control values. Whereas hydraulic failure was ubiquitous, only F. ornus depleted NSC reserves at mortality. Our results suggest that preserving higher NSC content at the end of a drought can be important for the hydraulic resilience of trees.


Subject(s)
Betulaceae , Carbohydrate Metabolism , Droughts , Fraxinus , Water Movements , Betulaceae/physiology , Carbohydrates/chemistry , Fraxinus/physiology , Plant Leaves/physiology , Plant Transpiration/physiology , Trees , Water/metabolism , Xylem/physiology
8.
BMC Plant Biol ; 19(1): 408, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533621

ABSTRACT

BACKGROUND: Intensity of drought stress and pest attacks is forecasted to increase in the near future posing a serious threat to natural and agricultural ecosystems. Knowledge on potential effects of a combined abiotic-biotic stress on whole-plant physiology is lacking. We monitored the water status and carbon metabolism of a vine rootstock with or without scion subjected to water shortening and/or infestation with the sucking insect phylloxera (Daktulosphaira vitifoliae Fitch). We measured non-structural carbohydrates and biomass of different plant organs to assess the stress-induced responses at the root, stem, and leaf level. Effects of watering on root infestation were also addressed. RESULTS: Higher root infestation was observed in drought-stressed plants compared to well-watered. The drought had a significant impact on most of the measured functional traits. Phylloxera further influenced vines water and carbon metabolism and enforced the sink strength of the roots by stimulating photosynthates translocation. The insect induced carbon depletion, reprogramed vine development, while preventing biomass compensation. A synergic effect of biotic-abiotic stress could be detected in several physiological and morphological traits. CONCLUSIONS: Our results indicate that events of water shortage favour insects' feeding damage and increase the abundance of root nodosities. Root phylloxera infestation imposes a considerable stress to the plants which might exacerbate the negative effects of drought.


Subject(s)
Droughts , Vitis/physiology , Animals , Biomass , Herbivory , Insecta/pathogenicity , Plant Roots/parasitology , Plant Roots/physiology , Stress, Physiological/physiology , Vitis/parasitology
9.
Sci Total Environ ; 692: 669-675, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31539975

ABSTRACT

Environmental sustainability of viticulture is negatively affected by prolonged droughts. In limestone dominated regions, there is limited knowledge on grapevine water status and on methods for accurate evaluation of actual water demand, necessary to appropriately manage irrigation. During a dry vintage, we monitored plant and soil water relations in old and young vines of Istrian Malvasia on Karst red soil. The vineyard with young vines was additionally subdivided into two areas, based on their soil type, 1) karst silty-clay loam, and 2) mixture of crushed rocks and karst silty-clay loam (stony soil). Seasonal changes in exploited water resources were estimated via analysis of oxygen isotope composition (δ18O) of rainfall, deep soil water, and xylem sap. We hypothesized that plants are able to thrive during drought thanks to the water stored in deep soil layers, while they rely less on superficial soil horizons. Our results show that vines growing on karstic substrates have deep roots securing the use of stable water sources during summer, with consequent favourable plant water status. In fact, both young and mature vines approached the threshold of severe water stress, but never surpassed it, as midday leaf water potentials were >-1.3MPa in all study sites. Vines roots showed flexible water uptake, i.e. the ability to absorb water from deep or shallow soil horizons during drought and after late-summer thunderstorms, which was particularly evident in vines growing on the stony soil. In fact, precipitations of 20mm were enough for plant water status recovery, due to fast infiltration. On the other hand, at least 50mm of rainfall were necessary to induce water status recovery in more compact soil (karst silty-clay loam). Our findings provide new knowledge on the rooting depth and water needs of vines growing on shallow soils overlying fractured limestone bedrock.


Subject(s)
Soil/chemistry , Vitis/metabolism , Water/metabolism , Droughts , Italy , Plant Roots/growth & development , Plant Roots/metabolism , Vitis/growth & development
10.
Tree Physiol ; 39(10): 1675-1684, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31211372

ABSTRACT

Understanding which structural and functional traits are linked to species' vulnerability to embolism formation (P50) may provide fundamental knowledge on plant strategies to maintain an efficient water transport. We measured P50, wood density (WD), mean conduit area, conduit density, percentage areas occupied by vessels, parenchyma cells (PATOT) and fibers (FA) on branches of angiosperm and gymnosperm species. Moreover, we compiled a dataset of published hydraulic and anatomical data to be compared with our results. Species more vulnerable to embolism had lower WD. In angiosperms, the variability in WD was better explained by PATOT and FA, which were highly correlated. Angiosperms with a higher P50 (less negative) had a higher amount of PATOT and total amount of nonstructural carbohydrates. Instead, in gymnosperms, P50 vs PATOT was not significant. The correlation between PATOT and P50 might have a biological meaning and also suggests that the causality of the commonly observed relationship of WD vs P50 is indirect and dependent on the parenchyma fraction. Our study suggests that angiosperms have a potential active embolism reversal capacity in which parenchyma has an important role, while in gymnosperms this might not be the case.


Subject(s)
Cycadopsida , Embolism , Magnoliopsida , Humans , Water , Wood , Xylem
11.
Conserv Physiol ; 7(1): coz012, 2019.
Article in English | MEDLINE | ID: mdl-31198559

ABSTRACT

Ongoing climate change is apparently increasing tree mortality rates, and understanding mechanisms of drought-induced tree decline can improve mortality projections. Differential drought impact on conspecific individuals within a population has been reported, but no clear mechanistic explanation for this pattern has emerged. Following a severe drought (summer 2012), we monitored over a 3-year period healthy (H) and declining (D) Pinus nigra trees co-occurring in a karstic woodland to highlight eventual individual-specific physiological differences underlying differential canopy dieback. We investigated differences in water and carbon metabolism, and xylem anatomy as a function of crown health status, as well as eventual genotypic basis of contrasting drought responses. H and D trees exploited the same water pools and relied on similar hydraulic strategies to cope with drought stress. Genetic analyses did not highlight differences between groups in terms of geographical provenance. Hydraulic and anatomical analyses showed conflicting results. The hydraulic tracheid diameter and theoretical hydraulic conductivity were similar, but D trees were characterized by lower water transport efficiency, greater vulnerability to xylem conduit implosion and reduced carbohydrate stores. Our results suggest that extreme drought events can have different impacts on conspecific individuals, with differential vulnerability to xylem embolism likely playing a major role in setting the fate of trees under climate change.

12.
Plant Physiol Biochem ; 139: 395-399, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30959448

ABSTRACT

Drought tolerance shapes the distribution of plant species, and it is mainly determined by the osmotic potential at full turgor (π0) and the water potential at turgor loss point (Ψtlp). We provide a simplified framework for π0 and Ψtlp measurements based on osmometer determination of π0 (π0_osm). Specifically, we ran regression models to i) improve the predictive power of the estimation of π0 from π0_osm and morpho-anatomical traits; ii) obtain the most accurate model to predict Ψtlp on the basis of the global relationship between π0 and Ψtlp. The inclusion of the leaf dry matter content (LDMC), an easy-to-measure trait, in the regression model improved the predictive power of the estimation of π0 from π0_osm. When π0_osm was used as a simple predictor of Ψtlp, discrepancies arose in comparison with global relationship between π0 and Ψtlp. Ψtlp values calculated as a function of the π0 derived from π0_osm and LDMC (π0_fit) were consistent with the global relationship between π0 and Ψtlp. The simplified framework provided here could encourage the inclusion of mechanistically sound drought tolerance traits in ecological studies.


Subject(s)
Plant Leaves/metabolism , Plant Leaves/physiology , Droughts , Osmosis/physiology , Plant Transpiration/physiology , Water/metabolism
13.
Tree Physiol ; 39(1): 76-87, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29982793

ABSTRACT

Invasion of natural habitats by alien trees is a threat to forest conservation. Our understanding of fundamental ecophysiological mechanisms promoting plant invasions is still limited, and hydraulic and water relation traits have been only seldom included in studies comparing native and invasive trees. We compared several leaf and wood functional and mechanistic traits in co-occurring Ailanthus altissima (Mill.) Swingle (Aa) and Fraxinus ornus L. (Fo). Aa is one of the most invasive woody species in Europe and North America, currently outcompeting several native trees including Fo. We aimed at quantifying inter-specific differences in terms of: (i) performance in resource use and acquisition; (ii) hydraulic efficiency and safety; (iii) carbon costs associated to leaf and wood construction; and (iv) plasticity of functional and mechanistic traits in response to light availability. Traits related to leaf and wood construction and drought resistance significantly differed between the two species. Fo sustained higher structural costs than Aa, but was more resistant to drought. The lower resistance to drought stress of Aa was counterbalanced by higher water transport efficiency, but possibly required mechanisms of resilience to drought-induced hydraulic damage. Larger phenotypic plasticity of Aa in response to light availability could also promote the invasive potential of the species.


Subject(s)
Ailanthus/physiology , Fraxinus/physiology , Introduced Species , Trees/physiology , Droughts , Light , Plant Transpiration , Water
14.
Physiol Plant ; 165(4): 843-854, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29923608

ABSTRACT

More frequently occurring, drought waves call for a deeper understanding of tree hydraulics and fast and easily applicable methods to measure drought stress. The aim of this study was to establish empirical relationships between the percent loss of hydraulic conductivity (PLC) and the relative water loss (RWL) in woody stem axes with different P50 , i.e. the water potential (Ψ) that causes 50% conductivity loss. Branches and saplings of temperate conifer (Picea abies, Larix decidua) and angiosperm species (Acer campestre, Fagus sylvatica, Populus x canescens, Populus tremula, Sorbus torminalis) and trunk wood of mature P. abies trees were analyzed. P50 was calculated from hydraulic measurements following bench top dehydration or air injection. RWL and PLC were fitted by linear, quadratic or cubic equations. Species- or age-specific RWLs at P50 varied between 10 and 25% and P88 , the Ψ that causes 88% conductivity loss, between 18 and 44%. P50 was predicted from the relationship between Ψ and the RWL. The predictive quality for P50 across species was almost 1:1 (r2 = 0.99). The approach presented allows thus reliable and fast prediction of PLC from RWL. Branches and saplings with high hydraulic vulnerability tended to have lower RWLs at P50 and at P88 . The results are discussed with regard to the different water storage capacities in sapwood and survival strategies under drought stress. Potential applications are screening trees for drought sensitivity and a fast interpretation of diurnal, seasonal or drought induced changes in xylem water content upon their impact on conductivity loss.


Subject(s)
Trees/metabolism , Trees/physiology , Water/metabolism , Droughts , Magnoliopsida/metabolism , Magnoliopsida/physiology , Plant Stems/metabolism , Plant Stems/physiology , Tracheophyta/metabolism , Tracheophyta/physiology
15.
New Phytol ; 221(4): 1831-1842, 2019 03.
Article in English | MEDLINE | ID: mdl-30347122

ABSTRACT

The seedling stage is the most susceptible one during a tree's life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ50 -1.13MPa) than stems (-2.51 MPa) and roots (-1.78 MPa). The main leaf veins of F. sylvatica had similar Ψ50 values (-2.26 MPa) to stems (-2.74 MPa) and roots (-2.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro-CT based PLC calculations. Micro-CT analyses indicated a species-specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade-tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits.


Subject(s)
Acer/physiology , Fagus/physiology , Seedlings/physiology , Acer/anatomy & histology , Fagus/anatomy & histology , Plant Leaves/physiology , Plant Roots/physiology , Plant Stems/physiology , Seedlings/anatomy & histology , Species Specificity , X-Ray Microtomography , Xylem/physiology
16.
Tree Physiol ; 39(3): 503-510, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30307571

ABSTRACT

Xylem resistance to embolism formation determines the species-specific drought tolerance and the survival prospects of plants under extreme climatic conditions. Fourier Transform-Infrared (FTIR) spectroscopy is a cost-effective and rapid analytical tool with potential beyond its current use in plant physiology. We tested the use of FTIR spectroscopy as a method for estimating wood density (WD) and xylem resistance to embolism formation (P50) in 24 angiosperm species. Higher WD was associated with more negative P50 (r2 = 0.41). Partial least squares regression was applied to establish models of FTIR spectra and the reference data. They showed a high predictive quality for WD (r2 = 0.73), whereas the prediction of P50 was weaker (r2 = 0.49). By including WD in the model as an additional factor influencing P50, its predictive power significantly increased (r2 = 0.59). The spectral range in the model elaboration has been also narrowed (bands of lignin, cellulose, hemicellulose), but this did not influence the model descriptors, suggesting that for P50 prediction broad spectral range is more informative than narrow band regions reflecting main wood constituents. In conclusion, FTIR spectroscopy associated with WD measurements has proven to be a promising alternative to traditional methods for screening of individual- or species-specific resistance to embolism in angiosperms.


Subject(s)
Magnoliopsida/physiology , Spectroscopy, Fourier Transform Infrared/methods , Trees/physiology , Wood/physiology , Xylem/physiology , Plant Diseases/etiology , Species Specificity
17.
New Phytol ; 220(1): 104-110, 2018 10.
Article in English | MEDLINE | ID: mdl-30040128

ABSTRACT

Synchrotron X-ray computed micro-tomography (microCT) has emerged as a promising noninvasive technique for in vivo monitoring of xylem function, including embolism build-up under drought and hydraulic recovery following re-irrigation. Yet, the possible harmful effects of ionizing radiation on plant tissues have never been quantified. We specifically investigated the eventual damage suffered by stem living cells of three different species exposed to repeated microCT scans. Stem samples exposed to one, two or three scans were used to measure cell membrane and RNA integrity, and compared to controls never exposed to X-rays. Samples exposed to microCT scans suffered serious alterations to cell membranes, as revealed by marked increase in relative electrolyte leakage, and also underwent severe damage to RNA integrity. The negative effects of X-rays were apparent in all species tested, but the magnitude of damage and the minimum number of scans inducing negative effects were species-specific. Our data show that multiple microCT scans lead to disruption of fundamental cellular functions and processes. Hence, microCT investigation of phenomena that depend on physiological activity of living cells may produce erroneous results and lead to incorrect conclusions.


Subject(s)
Imaging, Three-Dimensional/methods , Synchrotrons , X-Ray Microtomography , Electrolytes/metabolism , Populus/anatomy & histology , RNA, Plant/genetics , Temperature
18.
Planta ; 247(3): 705-714, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29170912

ABSTRACT

MAIN CONCLUSION: Drought tolerance was greater in the whole lichen than in its isolated photobiont. Cell turgor state has an influence on the functionality of photosynthetic process in lichens. Irreversible thermodynamics is widely used to describe the water relations of vascular plants. However, poikilohydrous organisms like lichens and aeroterrestrial microalgae have seldom been studied using this approach. Water relations of lichens are generally addressed without separate analysis of the mycobiont and photobiont, and only few studies have correlated changes in photosynthetic efficiency of dehydrating lichens to accurate measurements of their water potential components. We measured water potential isotherms and chlorophyll a fluorescence in the lichen Flavoparmelia caperata harvested in different seasons, as well as in its isolated photobiont, the green alga Trebouxia gelatinosa, either exposed to water stress cycles or fully hydrated. No significant seasonal trends were observed in lichen water relations parameters. Turgor loss point and osmotic potential of the whole thallus were significantly lower than those measured in the photobiont, while differences between the water stressed photobiont and controls were not significant. Dehydration-induced drop of F v/F m was correlated with turgor loss, revealing that the photosynthetic activity of lichens partly depends on their turgor level. We provided one of the first quantitative evidences of the influence that turgor status could exert on the functionality of photosynthetic processes in lichens.


Subject(s)
Lichens/physiology , Photosynthetic Reaction Center Complex Proteins/metabolism , Chlorophyll/metabolism , Chlorophyll A , Chlorophyta/metabolism , Chlorophyta/physiology , Dehydration/metabolism , Lichens/metabolism , Light , Osmotic Pressure , Photosynthetic Reaction Center Complex Proteins/physiology , Seasons , Water/metabolism
19.
Plant Physiol Biochem ; 120: 24-29, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28968592

ABSTRACT

Vulnerability curves (VCs) are a useful tool to investigate the susceptibility of plants to drought-induced hydraulic failure, and several experimental techniques have been used for their measurement. The validity of the bench dehydration method coupled to hydraulic measurements, considered as a 'golden standard', has been recently questioned calling for its validation with non-destructive methods. We compared the VCs of a herbaceous crop plant (Helianthus annuus) obtained during whole-plant dehydration followed by i) hydraulic flow measurements in stem segments (classical destructive method) or by ii) in vivo micro-CT observations of stem xylem conduits in intact plants. The interpolated P50 values (xylem water potential inducing 50% loss of hydraulic conductance) were -1.74 MPa and -0.87 MPa for the hydraulic and the micro-CT VC, respectively. Interpolated P20 values were similar, while P50 and P80 were significantly different, as evidenced by non-overlapping 95% confidence intervals. Our results did not support the tension-cutting artefact, as no overestimation of vulnerability was observed when comparing the hydraulic VC to that obtained with in vivo imaging. After one scan, 25% of plants showed signs of x-ray induced damage, while three successive scans caused the formation of a circular brownish scar in all tested plants. Our results support the validity of hydraulic measurements of samples excised under tension provided standard sampling and handling protocols are followed, but also show that caution is needed when investigating vital plant processes with x-ray imaging.


Subject(s)
Helianthus , Plant Stems , X-Ray Microtomography , Xylem , Helianthus/chemistry , Helianthus/physiology , Hydrostatic Pressure , Plant Stems/chemistry , Plant Stems/physiology , Xylem/chemistry , Xylem/physiology
20.
New Phytol ; 213(3): 1068-1075, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27735069

ABSTRACT

Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging -3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.


Subject(s)
Laurus/physiology , Plant Stems/physiology , Water/physiology , X-Ray Microtomography , Xylem/physiology , Xylem/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...