Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6175, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794046

ABSTRACT

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications. In total, the approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Genome
2.
Res Sq ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945419

ABSTRACT

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN PAM preference, with the N-terminus of Sc++, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse NNN PAMs and disease-related loci for potential therapeutic applications. In total, the unique approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.

3.
J Huntingtons Dis ; 10(1): 165-173, 2021.
Article in English | MEDLINE | ID: mdl-33579859

ABSTRACT

The use of genome wide association studies (GWAS) in Huntington's disease (HD) research, driven by unbiased human data analysis, has transformed the focus of new targets that could affect age at onset. While there is a significant depth of information on DNA damage repair, with many drugs and drug targets, most of this development has taken place in the context of cancer therapy. DNA damage repair in neurons does not rely on DNA replication correction mechanisms. However, there is a strong connection between DNA repair and neuronal metabolism, mediated by nucleotide salvaging and the poly ADP-ribose (PAR) response, and this connection has been implicated in other age-onset neurodegenerative diseases. Validation of leads including the mismatch repair protein MSH3, and interstrand cross-link repair protein FAN1, suggest the mechanism is driven by somatic CAG instability, which is supported by the protective effect of CAA substitutions in the CAG tract. We currently do not understand: how somatic instability is triggered; the state of DNA damage within expanding alleles in the brain; whether this damage induces mismatch repair and interstrand cross-link pathways; whether instability mediates toxicity, and how this relates to human ageing. We discuss DNA damage pathways uncovered by HD GWAS, known roles of other polyglutamine disease proteins in DNA damage repair, and a panel of hypotheses for pathogenic mechanisms.


Subject(s)
DNA Repair/genetics , Genome-Wide Association Study , Genomic Instability/genetics , Huntington Disease/genetics , Spinocerebellar Ataxias/genetics , Humans
4.
Behav Sleep Med ; 1(2): 102-14, 2003.
Article in English | MEDLINE | ID: mdl-15600132

ABSTRACT

The endogenous melatonin onset in dim light (DLMO) is a marker of circadian phase that can be used to appropriately time the administration of bright light or exogenous melatonin in order to elicit a desired phase shift. Determining an individual's circadian phase can be costly and time-consuming. We examined the relationship between the DLMO and sleep times in 16 young healthy individuals who slept at their habitual times for a week. The DLMO occurred about 2 hours before bedtime and 14 hours after wake. Wake time and midpoint of sleep were significantly associated with the DLMO (r = 0.77, r = 0.68 respectively), but bedtime was not (r = 0.36). The possibility of predicting young healthy normally entrained people's DLMOs from their sleep times is discussed.


Subject(s)
Light , Melatonin/metabolism , Sleep/physiology , Adult , Female , Humans , Male , Melatonin/analysis , Saliva/chemistry , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...