Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38337986

ABSTRACT

The roots of Gentiana lutea L. are utilized in the preparation of various beverages and herbal remedies, serving as a traditional remedy for gastrointestinal ailments. The spasmolytic activity that could substantiate the traditional use of G. lutea root had not been investigated. The main objective goal of the study was to determine the validity of its use as a traditional remedy. The extraction of G. lutea root was performed using a 50% hydroethanolic solvent with three different extraction techniques: ultrasound-assisted extraction (UAE), heat-assisted extraction, and percolation. The spasmolytic activity was tested on isolated rat ileum. The mechanism of action was monitored using the models of spontaneous contractions and acetylcholine-, histamine-, CaCl2-, Bay K8644-, L-NAME-, ODQ-, apamin-, BaCl2-, charybdotoxin-, glibenclamide-, TRAM-34-, and quinine-modified contractions. UAE, having the best bioactivity, was further subjected to a liquid-liquid extraction fractionation. HPLC phytochemical analysis was performed for all tested extracts and fractions. Gentian root extracts were rich in secoiridoids, xanthones, and flavonoids. The UAE has shown better results on spontaneous contractions in comparison to its fractions, leading to the more detailed testing of its spasmolytic mechanism of activity. The extract's activity is primarily mediated through intermediate conductance Ca2+-activated K+ channels, ATP-sensitive K+ channels, voltage-sensitive K+ channels, and mechanisms that activate Ca2+ channels. Overall, the G. lutea root shows great potential in the treatment of spasmodic gastrointestinal ailments.

2.
Plants (Basel) ; 13(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256834

ABSTRACT

Recovering the bioactive components from pomegranate peel (PP) in the fruit-processing industry has attracted great attention in terms of minimizing the waste burden, as well as providing a new source of a multitude of functional compounds. The present study aimed to develop a feasible microencapsulation process of PP extract by using pectin and a pectin/2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) blend as coating materials. Microsized powders obtained by a spray drying technique were examined in terms of technological characteristics, exhibiting high powder yield and desirable moisture content, flowability, and cohesive properties. Assuming that the interactions with the used biopolymers occur on the surface hydrophobic domain, their presence significantly improved the thermal stability of the microencapsulated powders up to 200 °C. The health-promoting effects of PP have been associated with its high content in ellagitannins, particularly punicalagin. The obtained PP powders exhibited strong antioxidant and hypoglycemic potential, while an antimicrobial assay revealed their potent activity against Gram-positive bacteria. Additionally, an in vitro release study suggested that the used biopolymers can modify the release of target bioactive compounds, thus establishing a basis for developing an oral-controlled release system. Altogether, biowaste valorization from PP by the production of effective multifunctional microsized powders represents a sustainable way to obtain novel nutraceuticals and/or pharmaceuticals.

3.
Chem Biodivers ; 21(2): e202301528, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116850

ABSTRACT

Immortelle, a revered Mediterranean medicinal plant, is celebrated for its potent essential oil renowned in the cosmetic industry for its skin-enhancing properties. Yet, immortelle hydrosol, an often-overlooked byproduct, holds promise in cosmetics due to its compatibility with polar active ingredients. This study investigates the chemical composition of immortelle hydrosol by employing liquid-liquid extraction (LLE) to transfer volatile organic components into nonpolar solvents. Four solvents - chloroform, dichloromethane, hexane, and benzene - were assessed through ten consecutive extractions from industrially produced immortelle hydrosol. Quantification was achieved using GC analysis with tetradecane as an internal standard. Chloroform emerged as the most efficient solvent, yielding 2447.0 mg/L of volatile compounds, surpassing dichloromethane, hexane, and benzene. Key compounds in immortelle hydrosol included 3-pentanone, 2-methyl-1-butanol, and γ-terpineol. Importantly, the study revealed that a portion of essential oil compounds persists in the hydrosol even after ten LLE cycles, with optimal results achievable in five extractions (~92 % in most cases).


Subject(s)
Hexanes , Oils, Volatile , Solvents , Benzene/analysis , Chloroform/analysis , Methylene Chloride/analysis , Liquid-Liquid Extraction , Oils, Volatile/chemistry
4.
Plants (Basel) ; 12(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38068615

ABSTRACT

The aim of the research was to develop microencapsulated powders of bilberry and chokeberry extracts via the spray drying technique. Two biopolymers, pectin alone and in combination with HP-ß-CD, were used to preserve the antioxidant, hypoglycemic, photoprotective, and antimicrobial bioactivity of the berry leaf extracts. Moreover, the formed powders were characterized in terms of technological, chemical, and several biological properties. The obtained micro-sized powders (mean average particle diameter from 3.83 to 5.94 µm) demonstrated a process yield of up to 73%. The added biopolymers improved the flowability and cohesive properties of the powders and increased their thermal stability to 170 °C. The total content of polyphenolics in the powders ranged from 323.35 to 367.76 mg GAE/g DW for bilberry and from 186.85 to 227.59 mg GAE/g DW for chokeberry powders; meanwhile, chlorogenic acid was the predominant compound in powders. All samples showed stronger α-glucosidase inhibitory activity (IC50 values ranged from 5.00 to 19.59 µg/mL) compared with the reference standard. The study confirmed that spray drying is a suitable method for the preservation of the polyphenolic-rich extracts, while the addition of carriers has a positive effect on the improvement of microencapsulated powders' properties.

5.
Plants (Basel) ; 12(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687310

ABSTRACT

In the present study, rosehip (Rosa canina L.) extract was successfully encapsulated in phospholipid liposomes using a single-step procedure named the proliposome method. Part of the obtained liposomes was subjected to UV irradiation and non-treated (native) and UV-irradiated liposomes were further characterized in terms of encapsulation efficiency, chemical composition (HPLC analysis), antioxidant capacity, particle size, PDI, zeta potential, conductivity, mobility, and antioxidant capacity. Raman spectroscopy as well as DSC analysis were applied to evaluate the influence of UV irradiation on the physicochemical properties of liposomes. The encapsulation efficiency of extract-loaded liposomes was higher than 90%; the average size was 251.5 nm; the zeta potential was -22.4 mV; and the conductivity was found to be 0.007 mS/cm. UV irradiation did not cause a change in the mentioned parameters. In addition, irradiation did not affect the antioxidant potential of the liposome-extract system. Raman spectroscopy indicated that the extract was completely covered by the lipid membrane during liposome entrapment, and the peroxidation process was minimized by the presence of rosehip extract in liposomes. These results may guide the potential application of rosehip extract-loaded liposomes in the food, pharmaceutical, or cosmetic industries, particularly when liposomal sterilization is needed.

6.
Foods ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627994

ABSTRACT

(1) Background: Bacterial nanocellulose (BNC) has gained in popularity over the years due to its outstanding properties such as renewability, biocompatibility, and bioavailability, and its use as an eco-friendly material of the future for replacing petrochemical products. (2) Methods: This research refers to the utilization of lignocellulose coming from wood waste via enzymatic hydrolysis to produce biopolymer BNC with an accumulation rate of 0.09 mg/mL/day. Besides its significant contribution to the sustainability, circularity, and valorization of biomass products, the obtained BNC was functionalized through the adsorption of black raspberry extract (BR) by simple soaking. (3) Results: BR contained 77.25 ± 0.23 mg GAE/g of total phenolics and 27.42 ± 0.32 mg CGE/g of total anthocyanins. The antioxidant and antimicrobial activity of BR was evaluated by DPPH (60.51 ± 0.18 µg/mL) and FRAP (1.66 ± 0.03 mmol Fe2+/g) and using a standard disc diffusion assay, respectively. The successful synthesis and interactions between BNC and BR were confirmed by FTIR analysis, while the morphology of the new nutrient-enriched material was investigated by SEM analysis. Moreover, the in vitro release kinetics of a main active compound (cyanidin-3-O-rutinoside) was tested in different release media. (4) Conclusions: The upcycling process of lignocellulose into enriched BNC has been demonstrated. All findings emphasize the potential of BNC-BR as a sustainable food industry material.

7.
Chem Biodivers ; 20(8): e202300427, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37439445

ABSTRACT

Medicinal plants used in European folk medicine attached to Lamiales, Gentianales or Asterales orders are used to treat inflammatory disorders. Many targets have been identified but to date, implication of purinergic receptor P2X7 activation has not yet been investigated. We managed to evaluate the protective effect on P2X7 activation by plant extracts used as anti-inflammatory in European folk medicine by the YO-PRO-1 uptake dye in vitro bioassay. Results revealed that among our selected plants, species from Scrophularia and Plantago genus were able to decrease significantly P2X7 activation (>50 % at 0.1 and 1 µg/mL). UPLC/MS, dereplication and metabolomic analysis of Scrophularia extracts, allowed us to identify the cinnamoyl-iridoid harpagoside as putative inhibitor of P2X7 activation. These results open a new research field regarding the anti-inflammatory mechanism of cinnamoyl-iridoids bearing plants, which may involve the P2X7 receptor.


Subject(s)
Plants, Medicinal , Scrophularia , Receptors, Purinergic P2X7 , Iridoids/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology
8.
Phytochem Anal ; 34(6): 661-679, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37387322

ABSTRACT

INTRODUCTION: The endemic species Nepeta cyrenaica Quézel & Zaffran, native to northeastern Libya, is valued as an important honey-bearing plant. OBJECTIVES: This study was aimed to examine the micromorphology, phytochemistry, and bioactivity of in vitro-propagated N. cyrenaica for the first time. MATERIALS AND METHODS: The leaf indumentum was examined using light and scanning electron microscopy and further characterised for histochemistry. The chemical composition of essential oil (EO) was performed using GC-MS analysis, while dichloromethane (DCM), methanol (ME), ethanol (ET), and aqueous (AQ) extracts were analysed using qualitative and quantitative LC/MS analyses. The antioxidant activities of EO and extracts were assessed using three parallel assays, while enzyme-inhibiting effects were evaluated against four enzymes. RESULTS: The leaves bear various types of glandular trichomes, with lipophilic secretion predominating. The main EO component of EO was 1,8-cineole. A considerable number of phenolics and iridoids were tentatively identified in the ME extract. Quantitative LC/MS analysis confirmed that ferulic acid, rosmarinic acid, and epigallocatechin gallate were present in the highest amount in the extracts, in which three iridoids were also quantified. Although the ME extract contained the highest amount of polyphenolics and iridoids, the DCM extract showed the best overall biological potential. Additionally, EO exerted the strongest acetylcholinesterase and tyrosinase inhibition. CONCLUSION: This study demonstrated that the endemic N. cyrenaica can be efficiently grown under in vitro conditions, where it develops various glandular trichomes that are thought to secrete and/or accumulate bioactive compounds with valuable medicinal potential.


Subject(s)
Lamiaceae , Nepeta , Oils, Volatile , Lamiaceae/chemistry , Nepeta/chemistry , Acetylcholinesterase , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/chemistry , Iridoids , Plant Leaves/chemistry
9.
Pharmaceutics ; 15(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37376144

ABSTRACT

Takotsubo syndrome (TTS) is an acute heart failure syndrome characterised by catecholamine-induced oxidative tissue damage. Punica granatum, a fruit-bearing tree, is known to have high polyphenolic content and has been proven to be a potent antioxidant. This study aimed to investigate the effects of pomegranate peel extract (PoPEx) pre-treatment on isoprenaline-induced takotsubo-like myocardial injury in rats. Male Wistar rats were randomised into four groups. Animals in the PoPEx(P) and PoPEx + isoprenaline group (P + I) were pre-treated for 7 days with 100 mg/kg/day of PoPEx. On the sixth and the seventh day, TTS-like syndrome was induced in rats from the isoprenaline(I) and P + I groups by administering 85 mg/kg/day of isoprenaline. PoPEx pre-treatment led to the elevation of superoxide dismutase and catalase (p < 0.05), reduced glutathione (p < 0.001) levels, decreased the thiobarbituric acid reactive substances (p < 0.001), H2O2, O2- (p < 0.05), and NO2- (p < 0.001), in the P + I group, when compared to the I group. In addition, a significant reduction in the levels of cardiac damage markers, as well as a reduction in the extent of cardiac damage, was found. In conclusion, PoPEx pre-treatment significantly attenuated the isoprenaline-induced myocardial damage, primarily via the preservation of endogenous antioxidant capacity in the rat model of takotsubo-like cardiomyopathy.

10.
Foods ; 12(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37174408

ABSTRACT

An anthocyanin-rich blue maize waste product was used for anthocyanin extraction. To preserve bioactive phenolic compounds, a spray-drying technique was employed using conventional wall material maltodextrin (MD), with novel one, hydroxypropyl-ß-cyclodextrin (HPBCD). The obtained spray-dried maize extract (SME) and microencapsulates were analyzed based on physicochemical powder properties, chemical analysis, antioxidant activity, and digestibility. The examined microencapsulates demonstrated good powder properties, exhibited a high powder yield (up to 83%), and had a low moisture content (less than 5%). HPBCD and MD + HPBCD combinations demonstrated superior powder properties in the terms of decreasing the time necessary for rehydration (133.25 and 153.8 s, respectively). The mean average particle diameter ranged from 4.72 to 21.33 µm. DSC analyses signified high powder thermal stability, around 200 °C, related to the increasing preservation with biopolymer addition. The total phenolic and anthocyanin compounds ranged from 30,622 to 32,211 mg CE/kg (CE-catechin equivalents) and from 9642 to 12,182 mg CGE/kg (CGE-cyanidin 3-glucoside equivalents), respectively, associated with good bioactive compound protection. Microencapsulates with both carriers (15% MD and 15% HPBCD) had the highest digestibility (73.63%). Our results indicated that the microencapsulates created with the active ingredient and the wall materials (MD and HPBCD) could protect phenolic compounds/anthocyanins against ABTS radicals (63.53 and 62.47 mmol Trolox Eq/kg, respectively).

11.
Food Chem ; 405(Pt A): 134816, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36345100

ABSTRACT

Innovative eco-friendly methods based on natural deep eutectic solvents (NaDES) coupled with ultrasound-assisted extraction were employed for chokeberry anthocyanins extractions. Nine different NaDES composed of choline chloride as a hydrogen bond acceptor and organic acids (lactic, citric, malic), sugars (glucose, fructose), polyols (glycerol, 1,2-propanediol, sorbitol), and an amide (urea) as hydrogen bond donors were screened. Malic acid-containing NaDES was selected for optimization extraction conditions (time, temperature, water in NaDES) by response surface methodology. Optimal conditions for simultaneously maximizing the anthocyanins extraction (cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, total anthocyanins) were 42.7 °C, 90 min, and 40 % (w/w) water in NaDES. In the next stage of this study, the possibility to improve anthocyanins extraction at elevated temperatures by incorporating different concentrations of hydroxypropyl-ß-cyclodextrin into selected NaDES was investigated. The extraction was improved at hydroxypropyl-ß-cyclodextrin concentrations up to 3 % (w/w). To clarify the interaction of NaDES components and anthocyanins, a molecular dynamic simulation was conducted.


Subject(s)
Anthocyanins , Cyclodextrins , Anthocyanins/chemistry , Deep Eutectic Solvents , 2-Hydroxypropyl-beta-cyclodextrin , Plant Extracts/chemistry , Water , Solvents/chemistry
12.
Molecules ; 27(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431972

ABSTRACT

BACKGROUND: Our recent study has shown that pomegranate peel extract (PEx) showed significant immunomodulatory activity, which might be caused by ellagitannins. The aim of this work was to test the hypothesis that ellagitannin components act synergistically in the modulation of cytokine production. METHODS: Human peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with phytohemagglutinin and treated with different concentrations of PEx or punicalagin (PG), punicalin (PN), and ellagic acid (EA), alone or with their combinations. Cytotoxicity, cell proliferation, and cytokine production were determined. RESULTS: Non-cytotoxic concentrations of all compounds significantly inhibited cell proliferation. IC50 values (µg/mL) were: EA (7.56), PG (38.52), PEx (49.05), and PN (69.95). PEx and all ellagitannins inhibited the levels of TNF-α, IL-6, and IL-8, dose-dependently, and their combinations acted synergistically. PEx and all ellagitannins inhibited Th1 and Th17 responses, whereas the lower concentrations of PEx stimulated the production of IL-10, a Treg cytokine, as did lower concentrations of EA. However, neither component of ellagitannins increased Th2 response, as was observed with PEx. CONCLUSIONS: The combination of PG, PN, and EA potentiated the anti-inflammatory response without any significant synergistic down-modulatory effect on T-cell cytokines. The increased production of IL-10 observed with PEx could be attributable to EA, but the examined ellagitannins are not associated with the stimulatory effect of PEx on Th2 response.


Subject(s)
Lythraceae , Pomegranate , Humans , Hydrolyzable Tannins/pharmacology , Ellagic Acid/pharmacology , Interleukin-10 , Leukocytes, Mononuclear , Plant Extracts/pharmacology , Cytokines
13.
Antibiotics (Basel) ; 11(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36358130

ABSTRACT

Having scarce information about ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) of white horehound (Marrubium vulgare L.), the idea has emerged to determine the optimal process parameters for the maximization of polyphenols and to compare the efficiency of these green extraction technologies. The optimal UAE parameters are temperature of 73.6 °C, extraction time of 40 min and ultrasound power of 30.3 W/L, while the optimal MAE parameters are 63.8% ethanol, extraction time of 15 min and microwave power of 422 W. Extract obtained at optimal UAE parameters shows the highest antihyperglycemic activity (α-amylase inhibition: 50.63% and α-glucosidase inhibition: 48.67%), which can potentially be explained by the presence of chlorogenic acid and quercetin, which were not identified in the macerates. The most sensitive bacterial strain to optimal ultrasonic extract is Bacillus cereus, whereas the most sensitive fungal strain is Saccharomyces cerevisiae.

14.
Molecules ; 27(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36364433

ABSTRACT

The residue after sieving ("dust") from the willow gentian underground parts is an unexploited herbal tea by-product, although it contains valuable bioactive compounds. Cyclodextrins as efficient green co-solvents, cage molecules, and multifunctional excipients could improve the extraction and contribute to the added value of the resulting extracts. The objective of this study was to determine the optimal conditions for the extraction of gentiopicroside, isogentisin, and total phenolics (TPC) from willow gentian "dust" using ultrasound-assisted water extraction coupled with hydroxypropyl-ß-cyclodextrin (HPßCD). The influence of extraction temperature (X1: 20-80 °C), time (X2: 20-50 min), and HPßCD concentration (X3: 2-4% w/v) was analyzed employing the response surface methodology (RSM). The optimal extraction conditions for simultaneously maximizing the extraction yield of all monitored responses were X1: 74.89 °C, X2: 32.57 min, and X3: 3.01% w/v. The experimentally obtained response values under these conditions (46.96 mg/g DW for gentiopicroside, 0.51 mg/g DW for isogentisin, and 12.99 mg GAE/g DW for TPC) were in close agreement with those predicted, thus confirming the suitability and good predictive accuracy of the developed RSM models. Overall, the developed extraction system could be an applicable alternative strategy to improve the extraction of bioactive compounds from the underutilized "dust" of willow gentian underground parts.


Subject(s)
Gentiana , Salix , Polyphenols/analysis , 2-Hydroxypropyl-beta-cyclodextrin , Water , Dust , Phenols/chemistry , Plant Extracts/chemistry
15.
Biology (Basel) ; 11(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36290369

ABSTRACT

To study the efficiency of two green-based extraction techniques for the isolation of bioactive constituents from black elderberry press cake, changes in phenolic compounds and main anthocyanin contents were analyzed. Polyphenolic content was correlated with antioxidant and antidiabetic potential by radical-scavenging activity and monitoring of α-amylase inhibition. Black elderberry press-cake extracts were obtained by ultrasound-assisted (UAE) and microwave-assisted (MAE) extractions under different extraction conditions. High-performance liquid chromatography (HPLC) analysis revealed that cyanidin-3-sambubioside and cyanidin-3-glucoside were the principal anthocyanins in all the obtained extracts, with their content being highest in MAE obtained at 80 °C over 5 min. The same extract induced two-fold higher antioxidant activity (IC50 6.89 µg/mL) and α-amylase inhibitory potential (IC50 2.18 mg/mL) in comparison to UAE extracts. The main compositional differences between extracts obtained by the same extraction technique were assigned to the extraction temperature. A principal component analysis confirmed that the antidiabetic feature is to be attributed to the rich content of anthocyanins in black elderberry press cake. Our results indicate the great potential of underutilized black elderberry press cake for the development of novel food and herbal formulations due to notable anthocyanin contents highly correlated with antidiabetic activity.

16.
Plants (Basel) ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297701

ABSTRACT

This study aimed to evaluate the potentials for skin-beneficial effects of the hydroethanolic extract of the aerial parts of ironwort (Sideritis raeseri Boiss. & Heldr. subsp. raeseri) and its fractions (petroleum ether, ethyl acetate, n-butanol and water). For these purposes, chemical analysis and in vitro antioxidant, anti-tyrosinase and antimicrobial assays, as well as determination of sun protection factor (SPF), were performed. The highest total phenolic content and quantity of individual flavonoids, chlorogenic acid and verbascoside were determined in the n-butanol fraction, which is in line with results obtained for antioxidant activity. The greatest antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa, the most common causative agents of the skin infections in humans, was exhibited by the ethyl acetate fraction. The strongest anti-tyrosinase activity was shown by the hydroethanolic extract (52.64% of inhibition at 100 µg/mL). Almost all tested samples showed photoprotective activity with SPF higher than 6 obtained at a low concentration of 0.1 mg/mL, which was more than 15 for the butanol fraction. These findings revealed that the hydroethanolic extract of S. raeseri aerial parts could be a valuable ingredient in the formulation of cosmetic and medicinal products intended to overcome various skin disorders.

17.
Plants (Basel) ; 11(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36297704

ABSTRACT

Bilberry fruits (Vaccinium myrtillus L.) are one of the richest natural sources of anthocyanins and are widely used due to their pharmacological and nutritional properties. To ensure their maximum application potential, it is necessary to overcome the limitations of conventional extraction solvents and techniques. This study aimed to develop a green method for bilberry anthocyanin extraction using natural deep eutectic solvents (NaDES) integrated with ultrasound-assisted extraction (UAE) in order to define extraction conditions that will prevent decomposition of the anthocyanins or the loss of bioactivity. After a screening of ten different NaDES, choline chloride:sorbitol (1:1) was selected as the most effective. Furthermore, the influence analysis and optimization of the NaDES-UAE extraction conditions were carried out employing response surface methodology. The optimal conditions were found to be an extraction time of 37.63 min, a temperature of 48.38 °C, and 34.79% (w/w) water in NaDES. The extraction yields of target compounds under optimized extraction conditions were 0.27 mg/g DW of cyanidin-3-O-glucoside and 2.12 mg CGE/g DW of TAC. The obtained optimized extract showed promising radical scavenging and antimicrobial activity. A stability study with the optimized extract revealed that refrigerated storage at 4 °C in the dark provided the best anthocyanins preservation. Overall, the developed NaDES-UAE method showed promising application potential and can be considered as a high-efficiency green alternative to conventional anthocyanins extraction methods, enabling the preservation of active ingredients and the bioactivity of extracts.

18.
Pharmaceutics ; 14(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35745713

ABSTRACT

Pomegranate peel extract (PoPEx) has been shown to have antioxidant and anti-inflammatory properties, but its effect on the adaptive immune system has not been sufficiently investigated. In this study, the treatment of human peripheral blood mononuclear cells (PBMC) with PoPEx (range 6.25-400 µg/mL) resulted in cytotoxicity at concentrations of 100 µg/mL and higher, due to the induction of apoptosis and oxidative stress, whereas autophagy was reduced. At non-cytotoxic concentrations, the opposite effect on these processes was observed simultaneously with the inhibition of PHA-induced PBMC proliferation and a significant decrease in the expression of CD4. PoPEx differently modulated the expression of activation markers (CD69, CD25, ICOS) and PD1 (inhibitory marker), depending on the dose and T-cell subsets. PoPEx (starting from 12.5 µg/mL) suppressed the production of Th1 (IFN-γ), Th17 (IL-17A, IL-17F, and IL-22), Th9 (IL-9), and proinflammatory cytokines (TNF-α and IL-6) in culture supernatants. Lower concentrations upregulated Th2 (IL-5 and IL-13) and Treg (IL-10) responses as well as CD4+CD25hiFoxp3+ cell frequency. Higher concentrations of PoPEx increased the frequency of IL-10- and TGF-ß-producing T-cells (much higher in the CD4+ subset). In conclusion, our study suggested for the first time complex immunoregulatory effects of PoPEx on T cells, which could assist in the suppression of chronic inflammatory and autoimmune diseases.

19.
Rev Cardiovasc Med ; 23(2): 57, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35229548

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is commonly associated with hyperglycemia, dyslipidemia, oxidative stress and inflammation which are well known cardiovascular risk factors. Pomegranate peel polyphenols have a proven hypolipemic, antioxidant and anti-inflammatory activity. However, there is a lack of clinical studies that would confirm its antioxidant and anti-inflammatory effects in diabetic patients. The potential of pomegranate peel extract (PoPEx) to counteract inflammation and oxidative stress in T2DM patients was investigated. For this purpose, a randomized, double-blind placebo-controlled study involving adult T2DM patients treated with PoPEx or placebo for eight-weeks was conducted. METHODS: Patients were randomly divided into two groups: the first group (n = 30) received capsules containing PoPEx 250 mg twice daily, while the placebo group (n = 30) received placebo capsules twice daily. Plasma concentration of inflammatory factors (interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and high sensitivity C reactive protein (hsCRP)), oxidative stress biomarkers (thiobarbituric acid reactive substances (TBARS), nitrites (NO2-), superoxide anion radical (O2-), hydrogen peroxide (H2O2), total antioxidant capacity (TAC)), homocysteine and lipid profile were analyzed. RESULTS: The PoPEx treatment showed a significant reduction of inflammatory factors (IL-6, TNF-α, hsCRP), oxidative stress biomarkers (TBARS, NO2-, O2-) and homocysteine, while the TAC was increased. Moreover, a significant improvement in lipid profile was observed in the PoPEx group. Additional analysis showed a significant inverse correlation between the decrements of all measured inflammatory markers and TAC in the PoPEx group. CONCLUSIONS: The study demonstrated that eight-week-long PoPEx administration had favorable effects on inflammatory status and oxidative stress biomarkers in diabetic patients.


Subject(s)
Diabetes Mellitus, Type 2 , Polyphenols , Adult , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/therapeutic use , Oxidative Stress , Polyphenols/adverse effects , Prospective Studies
20.
Health Care Women Int ; 43(10-11): 1234-1246, 2022.
Article in English | MEDLINE | ID: mdl-34846271

ABSTRACT

The researchers' aims were to evaluate the effects of chokeberry juice in the treatment of burning mouth syndrome (BMS) and oral discomfort in menopausal women. The following validated scales and questionnaires were used before and after treatment: questionnaire used for selection of research participants with xerostomia, the xerostomia inventory, Visual Analogue Scale (VAS), localization of pain before and after treatment, short-form McGill pain questionnaire. There was statistically significant decrease in number of research participants who felt pain after therapeutic procedure (p < 0.05). Chokeberry juice, as additional therapy for BMS, reduced intensity of characteristic types of pain sensations and oral dryness feeling.


Subject(s)
Burning Mouth Syndrome , Xerostomia , Female , Humans , Burning Mouth Syndrome/drug therapy , Pain Measurement , Pain , Menopause
SELECTION OF CITATIONS
SEARCH DETAIL
...