Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 12: 602812, 2021.
Article in English | MEDLINE | ID: mdl-33776951

ABSTRACT

Breeding programs of five-needle pines have documented both major gene resistance (MGR) and quantitative disease resistance (QDR) to Cronartium ribicola (Cri), a non-native, invasive fungal pathogen causing white pine blister rust (WPBR). WPBR is one of the most deadly forest diseases in North America. However, Cri virulent pathotypes have evolved and can successfully infect and kill trees carrying resistance (R) genes, including vcr2 that overcomes MGR conferred by the western white pine (WWP, Pinus monticola) R gene (Cr2). In the absence of a reference genome, the present study generated a vcr2 reference transcriptome, consisting of about 20,000 transcripts with 1,014 being predicted to encode secreted proteins (SPs). Comparative profiling of transcriptomes and secretomes revealed vcr2 was significantly enriched for several gene ontology (GO) terms relating to oxidation-reduction processes and detoxification, suggesting that multiple molecular mechanisms contribute to pathogenicity of the vcr2 pathotype for its overcoming Cr2. RNA-seq-based bulked segregant analysis (BSR-Seq) revealed genome-wide DNA variations, including about 65,617 single nucleotide polymorphism (SNP) loci in 7,749 polymorphic genes shared by vcr2 and avirulent (Avcr2) pathotypes. An examination of the distribution of minor allele frequency (MAF) uncovered a high level of genomic divergence between vcr2 and Avcr2 pathotypes. By integration of extreme-phenotypic genome-wide association (XP-GWAS) analysis and allele frequency directional difference (AFDD) mapping, we identified a set of vcr2-associated SNPs within functional genes, involved in fungal virulence and other molecular functions. These included six SPs that were top candidate effectors with putative activities of reticuline oxidase, proteins with common in several fungal extracellular membrane (CFEM) domain or ferritin-like domain, polysaccharide lyase, rds1p-like stress responsive protein, and two Cri-specific proteins without annotation. Candidate effectors and vcr2-associated genes provide valuable resources for further deciphering molecular mechanisms of virulence and pathogenicity by functional analysis and the subsequent development of diagnostic tools for monitoring the virulence landscape in the WPBR pathosystems.

2.
Plant Biotechnol J ; 15(9): 1149-1162, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28176454

ABSTRACT

Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.


Subject(s)
Basidiomycota/physiology , Disease Resistance/genetics , Pinus/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Transcriptome , Breeding , Chromosome Mapping , Gene Expression Profiling , Gene Ontology , Genetic Linkage , Genetic Loci/genetics , Genotype , Pinus/immunology , Pinus/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Seeds/genetics , Seeds/immunology , Seeds/microbiology
3.
BMC Genomics ; 17(1): 753, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27663193

ABSTRACT

BACKGROUND: Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), has resulted in mortality in this conifer species and is still spreading through the distribution. The objective of this research was to develop P. flexilis transcriptome-wide single nucleotide polymorphism (SNP) markers using RNA-seq analysis for genetic mapping of the major gene (Cr4) that confers complete resistance to C. ribicola. RESULTS: Needle tissues of one resistant and two susceptible seedling families were subjected to RNA-seq analysis. In silico SNP markers were uncovered by mapping the RNA-seq reads back to the de novo assembled transcriptomes. A total of 110,573 in silico SNPs and 2,870 indels were identified with an average of 3.7 SNPs per Kb. These SNPs were distributed in 17,041 unigenes. Of these polymorphic P. flexilis unigenes, 6,584 were highly conserved as compared to the genome sequence of P. taeda L (loblolly pine). High-throughput genotyping arrays were designed and were used to search for Cr4-linked genic SNPs in megagametophyte populations of four maternal trees by haploid-segregation analysis. A total of 32 SNP markers in 25 genes were localized on the Cr4 linkage group (LG). Syntenic relationships of this Cr4-LG map with the model conifer species P. taeda anchored Cr4 on Pinus consensus LG8, indicating that R genes against C. ribicola have evolved independently in different five-needle pines. Functional genes close to Cr4 were annotated and their potential roles in Cr4-mediated resistance were further discussed. CONCLUSIONS: We demonstrated a very effective, low-cost strategy for developing a SNP genetic map of a phenotypic trait of interest. SNP discovery through transcriptome comparison was integrated with high-throughput genotyping of a small set of in silico SNPs. This strategy may be applied to mapping any trait in non-model plant species that have complex genomes. Whole transcriptome sequencing provides a powerful tool for SNP discovery in conifers and other species with complex genomes, for which sequencing and annotation of complex genomes is still challenging. The genic SNP map for the consensus Cr4-LG may help future molecular breeding efforts by enabling both Cr4 positional characterization and selection of this gene against WPBR.

SELECTION OF CITATIONS
SEARCH DETAIL