Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Holocene ; 32(11): 1209-1221, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36177447

ABSTRACT

Due to the marine reservoir effect, radiocarbon dates of marine samples require a correction. Marine reservoir effects, however, may vary among different marine species within a given body of water. Factors such as diet, feeding depth and migratory behaviour all affect the 14C date of a marine organism. Moreover, there is often significant variation within single marine species. Whilst the careful consideration of the ΔR values of a single marine species in a given location is important, so too is the full range of ΔR values within an ecosystem. This paper illustrates this point, using a sample pairing method to estimate the reservoir effects in 17 marine samples, of eight different species, from the archaeological site of Ekven (Eastern Chukotka, Siberia). An OxCal model is used to assess the strength of these estimates. The marine reservoir effects of samples passing the model range from ΔR (Marine20) = 136 ± 41-ΔR = 460 ± 40. Marine reservoir effect estimates of these samples and other published samples are used to explore variability in the wider Bering Strait region. The archaeological implications of this variability are also discussed. The calibrating of 14C dates from human bone collagen, for example, could be improved by applying a dietary relevant marine reservoir effect correction. For humans from the site of Ekven, a ΔR (Marine20) correction of 289 ± 124 years or reservoir age correction of 842 ± 123 years is suggested.

2.
Sci Adv ; 8(29): eabo6493, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35867782

ABSTRACT

Research on the evolution of dog foraging and diet has largely focused on scavenging during their initial domestication and genetic adaptations to starch-rich food environments following the advent of agriculture. The Siberian archaeological record evidences other critical shifts in dog foraging and diet that likely characterize Holocene dogs globally. By the Middle Holocene, body size reconstruction for Siberia dogs indicates that most were far smaller than Pleistocene wolves. This contributed to dogs' tendencies to scavenge, feed on small prey, and reduce social foraging. Stable carbon and nitrogen isotope analysis of Siberian dogs reveals that their diets were more diverse than those of Pleistocene wolves. This included habitual consumption of marine and freshwater foods by the Middle Holocene and reliance on C4 foods by the Late Holocene. Feeding on such foods and anthropogenic waste increased dogs' exposure to microbes, affected their gut microbiomes, and shaped long-term dog population history.

3.
Ecol Evol ; 11(20): 14088-14100, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34707842

ABSTRACT

In the Aleutian Islands during the Holocene, terrestrial predators were actually absent; as a result, large seabird colonies thrived along the coasts or across entire islands. Bird guano enriches the soil with nitrogen, which can lead to the formation of highly modified ornithogenic (bird-formed) ecosystems. For a more detailed investigation of avian influence, we reconstructed more than 10,000-year-old vegetation dynamics of the coast of Shemya Island (Near Islands) by pollen analysis. At the initial stages of vegetation development (10,000-4,600 cal year BP), sedge-heather tundra grew in the studied area. A seabird colony existed on Shemya from 4,600 to 2,400 cal year BP according to stable isotope analysis. During a period of at least 2,200 years, nitrogen enrichment led to the development of ornithogenic herb meadows with a high presence of Apiaceae. A long-term increase in δ15N above 9-10‰ led to radical shifts in vegetation. Noticeable reduction of seabird colonies due to human hunting led to grass-meadows spreading. After a prolonged decrease δ15N below 9-10‰ (2,400 cal year BP to present), there was a shift toward less productive sedge-tundra communities. However, the significant enrichment of guano affected only the coastal vegetation and did not alter the inland Shemya Island.

4.
Int J Paleopathol ; 3(3): 176-181, 2013 Sep.
Article in English | MEDLINE | ID: mdl-29539452

ABSTRACT

A review of previous and original paleoparasitological investigations of animal dung deposits in Mongolia, Middle Asia, North Caucasus, and central European part of Russia is carried out. The age of deposits with helminth remains spans from ca. 38,000 years BP to premodern times. The composition of helminthes found in ancient feces of animals allows evaluation nutritional parameters of the past, and provides information on animal husbandry.

SELECTION OF CITATIONS
SEARCH DETAIL
...