Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 31(4): 474-478, 2023 04.
Article in English | MEDLINE | ID: mdl-36529819

ABSTRACT

Constitutional heterozygous mutations in CHEK2 gene have been associated with hereditary cancer risk. To date, only a few homozygous CHEK2 mutations have been reported in families with cancer susceptibility. Here, we report two unrelated individuals with a personal and familial cancer history in whom biallelic CHEK2 alterations were identified. The first case resulted homozygous for the CHEK2 c.793-1 G > A (p.Asp265Thrfs*10) variant, and the second one was found to be compound heterozygous for the c.1100delC (p.Thr367Metfs*15) and the c.1312 G > T (p.Asp438Tyr) variants. Multiple cytogenetic anomalies were demonstrated on peripheral lymphocytes of both patients. A literature revision showed that a single other CHEK2 homozygous variant was previously associated to a constitutional randomly occurring multi-translocation karyotype from peripheral blood in humans. We hypothesize that, at least some biallelic CHEK2 mutations might be associated with a novel disorder, further expanding the group of chromosome instability syndromes. Additional studies on larger cohorts are needed to confirm if chromosomal instability could represent a marker for CHEK2 constitutionally mutated recessive genotypes, and to investigate the cancer risk and the occurrence of other anomalies typically observed in chromosome instability syndromes.


Subject(s)
Breast Neoplasms , Protein Serine-Threonine Kinases , Humans , Female , Protein Serine-Threonine Kinases/genetics , Genetic Predisposition to Disease , Checkpoint Kinase 2/genetics , Mutation , Genotype , Chromosomal Instability
2.
Genes (Basel) ; 13(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36553625

ABSTRACT

In 2018, a new clinical subtype, caused by biallelic variants in the AEBP1 gene, encoding the ACLP protein, was added to the current nosological classification of the Ehlers-Danlos Syndromes (EDS). This new phenotype, provisionally termed EDS classical-like type 2 (clEDS2), has not yet been fully characterized, as only nine cases have been reported to date. Here we describe a patient, homozygous for a novel AEBP1 pathogenic variant (NM_001129.5 c.2123_2124delTG (p.Val708AlafsTer5)), whose phenotype is reminiscent of classical EDS but also includes previously unreported multiple congenital malformations. Furthermore, we briefly summarize the current principal clinical manifestations of clEDS2 and the molecular evidence surrounding the role of AEBP1 in the context of extracellular matrix homeostasis and connective tissue development. Although a different coexisting etiology for the multiple congenital malformations of our patient cannot be formally excluded, the emerging role of ACLP in TGF-ß and WNT pathways may explain their occurrence and the phenotypical variability of clEDS2.


Subject(s)
Ehlers-Danlos Syndrome , Humans , Mutation , Ehlers-Danlos Syndrome/pathology , Extracellular Matrix/genetics , Phenotype , Homozygote , Carboxypeptidases/genetics , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL