Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 16(6): 3843-9, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27176093

ABSTRACT

Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nanoparticles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle "supermolecules", that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diameter and sensitive to the elastic properties of the interstitial polymer. The latter dependence as well as finite element simulations suggest that this mode corresponds to the out-of-phase semirigid translation (l = 1 Lamb mode) of each nanoparticle of a dimer inside the matrix, activated by the mechanical coupling between the nanoparticles. These observations were permitted only thanks to the resonant excitation with the coupling plasmon excitation, leading to an enhancement up to 10(4) of the scattering by these vibrations. This enhanced ultralow frequency Raman scattering thus opens a new route to probe the local elastic properties of the surrounding medium.

2.
Phys Chem Chem Phys ; 17(30): 19751-8, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26109211

ABSTRACT

The ability of some materials with a perfectly ordered crystal structure to mimic the heat conduction of amorphous solids is a remarkable physical property that finds applications in numerous areas of materials science, for example, in the search for more efficient thermoelectric materials that enable to directly convert heat into electricity. Here, we unveil the mechanism in which glass-like thermal conductivity emerges in tetrahedrites, a family of natural minerals extensively studied in geology and, more recently, in thermoelectricity. By investigating the lattice dynamics of two tetrahedrites of very close compositions (Cu12Sb2Te2S13 and Cu10Te4S13) but with opposite glasslike and crystal thermal transport by means of powder and single-crystal inelastic neutron scattering, we demonstrate that the former originates from the peculiar chemical environment of the copper atoms giving rise to a strongly anharmonic excess of vibrational states.

3.
Opt Express ; 20(25): 27636-49, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23262712

ABSTRACT

We report on the photo-thermal activation of dielectric loaded plasmonic switches comprised of gold nanoparticle-doped polymer deposited onto a gold film. The plasmonic switches rely on a multi-mode interferometer design and are fabricated by electron beam lithography applied to a positive resin doped with gold nanoparticles at a volume ratio of 0.52%. A cross-bar switching is obtained at telecom wavelengths by pumping the devices with a visible beam having a frequency within the localized surface plasmon resonance band of the embedded nanoparticles. By comparing the switching performances of doped and undoped devices, we show that for the modest doping level we consider, the power needed to activate the doped switches is reduced by a factor 2.5 compared to undoped devices. The minimization of activation power is attributed to enhanced light-heat conversion and optimized spatial heat generation for doped devices and not to a change of the thermo-optic coefficient of the doped polymer.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/instrumentation , Optics and Photonics/instrumentation , Surface Plasmon Resonance/instrumentation , Telecommunications/instrumentation , Equipment Design , Finite Element Analysis , Hot Temperature , Light , Microtechnology/instrumentation , Microtechnology/methods , Models, Theoretical , Nanotechnology/methods , Optics and Photonics/methods , Polymers/chemistry , Surface Plasmon Resonance/methods
4.
Proc Natl Acad Sci U S A ; 105(39): 14784-9, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18818308

ABSTRACT

Control of nanocrystal (NC) crystallinity currently raises great interest because of its potential benefits in both physics modeling and technological applications. Advances in methods for synthesizing perfect single-crystalline NCs are recent, so that the effect of crystallinity on NC properties has received only limited study and still needs to be properly investigated. Here, we report that crystallinity of gold NCs dramatically modifies their vibrations. Using low-frequency Raman scattering, we clearly demonstrate that single-domain NCs vibrate differently than their multiply twinned counterparts, through the splitting of the quadrupolar vibrations, which is only observed for the former. Using the resonant ultrasound approach, we calculate the vibrational frequencies of a gold sphere and show that elastic anisotropy induces a lift of degeneracy of the quadrupolar mode in good agreement with our experimental measurements. These findings open up challenging perspectives on using Raman spectroscopy to characterize nanocrystallinity.

5.
Nanotechnology ; 19(37): 375701, 2008 Sep 17.
Article in English | MEDLINE | ID: mdl-21832555

ABSTRACT

We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.

SELECTION OF CITATIONS
SEARCH DETAIL
...