Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(17): e202300399, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37171048

ABSTRACT

Nowadays, solid electrolytes are considered the main alternative to conventional liquid electrolytes in lithium batteries. The fabrication of these materials is however limited by the strict synthesis conditions, requiring high temperatures which can negatively impact the final performances. Here, it is shown that a modification of garnet-based Li7 La3 Zr2 O12 (LLZO) and the incorporation of tellurium can accelerate the synthesis process by lowering the formation temperature of cubic LLZO at temperatures below 700 °C. Optimized synthesis at 750 °C showed a decrease in particle size and cell parameter for samples with higher amounts of Te and the evaluation of electrochemical performances reported for LLZO Te0.25 a value of ionic conductivity of 5,15×10-5  S cm-1 after hot-pressing at 700 °C, two orders of magnitude higher than commercial Al-LLZO undergoing the same working conditions, and the highest value at this densification temperature. Partial segregation of Te-rich phases occurs for high-temperature densification. Our study shows the advantages of Te insertion on the sintering process of LLZO garnet and demonstrates the achievement of highly conductive LLZO with a low-temperature treatment.

2.
Nanoscale ; 14(13): 5094-5101, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35297444

ABSTRACT

We report the influence of the partial substitution of Ge with Ti on the properties of NASICON Li1.5Al0.5Ge1.5(PO4)3 (LAGP) nanofibers prepared by electrospinning. Replacing a small amount of Ge (up to 20%) with Ti is advantageous for enhancing both the purity and morphology of LAGP fibers, as observed by X-ray diffraction, electron microscopy and nuclear magnetic resonance spectroscopy. When Ti-substituted LAGP (LAGTP) fibers are used as filler to develop composite polymer electrolytes, the ionic conductivity at 20 °C improves by a factor of 1.5 compared to the plain polymer electrolyte. Additionally, above 40 °C the LAGTP fiber-based composite electrolytes were more conductive than the equivalent LAGP fiber-based one. We believe that these findings can make a substantial contribution to optimizing current methods and developing novel synthesis approaches for NASICON based electrolytes.

3.
Sci Rep ; 10(1): 18410, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33110177

ABSTRACT

Dendrite formation, which could cause a battery short circuit, occurs in batteries that contain lithium metal anodes. In order to suppress dendrite growth, the use of electrolytes with a high shear modulus is suggested as an ionic conductive separator in batteries. One promising candidate for this application is Li7La3Zr2O12 (LLZO) because it has excellent mechanical properties and chemical stability. In this work, in situ scanning electron microscopy (SEM) technique was employed to monitor the interface behavior between lithium metal and LLZO electrolyte during cycling with pressure. Using the obtained SEM images, videos were created that show the inhomogeneous dissolution and deposition of lithium, which induce dendrite growth. The energy dispersive spectroscopy analyses of dendrites indicate the presence of Li, C, and O elements. Moreover, the cross-section mapping comparison of the LLZO shows the inhomogeneous distribution of La, Zr, and C after cycling that was caused by lithium loss near the Li electrode and possible side reactions. This work demonstrates the morphological and chemical evolution that occurs during cycling in a symmetrical Li-Li cell that contains LLZO. Although the superior mechanical properties of LLZO make it an excellent electrolyte candidate for batteries, the further improvement of the electrochemical stabilization of the garnet-lithium metal interface is suggested.

4.
ACS Appl Mater Interfaces ; 12(1): 1523-1532, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31820910

ABSTRACT

As most superhydrophobic coatings are made of soft materials, the need for harder, more robust films is evident in applications where erosional degradation is of concern. The work herein describes a methodology to produce superhydrophobic stainless-steel thermal spray coatings using the high-velocity oxygen fuel technique. Due to the use of a kerosene fuel source, a carbon-rich film is formed on the surface of the thermal spray coatings, lowering the surface energy of the high-energy metallic substrates. The thermal spray process generates a hierarchical micro-/sub-micro-structure that is needed to sustain superhydrophobicity. The effect of spray parameters such as particle velocity and temperature on the coating's hydrophobicity state was explored, and a high particle velocity was shown to cause superhydrophobic characteristics. The coatings were characterized using scanning electron microscopy, profilometry, X-ray photoelectron spectroscopy, static water contact angle measurements, water droplet roll-off measurements, and water droplet bouncing tests. The corrosion behavior of the coatings was studied using potentiodynamic polarization measurements in order to correlate water repellency with corrosion resistance; however, all coatings demonstrated active corrosion without passivation. This study describes an interesting phenomenon where superhydrophobicity does not guarantee corrosion resistance and discusses alternative applications for such materials.

5.
Materials (Basel) ; 9(2)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-28787917

ABSTRACT

This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s-1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load.

SELECTION OF CITATIONS
SEARCH DETAIL
...