Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
Sci Rep ; 14(1): 7751, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565591

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants may have different characteristics, e.g., in transmission, mortality, and the effectiveness of vaccines, indicating the importance of variant detection at the population level. Wastewater-based surveillance of SARS-CoV-2 RNA fragments has been shown to be an effective way to monitor the COVID-19 pandemic at the population level. Wastewater is a complex sample matrix affected by environmental factors and PCR inhibitors, causing insufficient coverage in sequencing, for example. Subsequently, results where part of the genome does not have sufficient coverage are not uncommon. To identify variants and their proportions in wastewater over time, we utilized next-generation sequencing with the ARTIC Network's primer set and bioinformatics pipeline to evaluate the presence of variants in partial genome data. Based on the wastewater data from November 2021 to February 2022, the Delta variant was dominant until mid-December in Helsinki, Finland's capital, and thereafter in late December 2022 Omicron became the most common variant. At the same time, the Omicron variant of SARS-CoV-2 outcompeted the previous Delta variant in Finland in new COVID-19 cases. The SARS-CoV-2 variant findings from wastewater are in agreement with the variant information obtained from the patient samples when visually comparing trends in the sewerage network area. This indicates that the sequencing of wastewater is an effective way to monitor temporal and spatial trends of SARS-CoV-2 variants at the population level.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater , Finland/epidemiology , Pandemics , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing
3.
Euro Surveill ; 28(31)2023 08.
Article in English | MEDLINE | ID: mdl-37535475

ABSTRACT

Since mid-July 2023, an outbreak caused by highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b genotype BB is ongoing among farmed animals in South and Central Ostrobothnia, Finland. Infections in foxes, American minks and raccoon dogs have been confirmed on 20 farms. Genetic analysis suggests introductions from wild birds scavenging for food in farm areas. Investigations point to direct transmission between animals. While no human infections have been detected, control measures are being implemented to limit spread and human exposure.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Farms , Finland/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Mink , Phylogeny
4.
Euro Surveill ; 27(16)2022 04.
Article in English | MEDLINE | ID: mdl-35451361

ABSTRACT

Recombinant sequences of the SARS-CoV-2 Omicron variant were detected in surveillance samples collected in north-western Finland in January 2022. We detected 191 samples with an identical genome arrangement in weeks 3 to 11, indicating sustained community transmission. The recombinant lineage has a 5'-end of BA.1, a recombination breakpoint between orf1a and orf1b (nucleotide position 13,296-15,240) and a 3'-end of BA.2 including the S gene. We describe the available genomic and epidemiological data about this currently circulating recombinant XJ lineage.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Finland/epidemiology , Genomics , Humans , SARS-CoV-2/genetics
5.
Emerg Infect Dis ; 28(6): 1229-1232, 2022 06.
Article in English | MEDLINE | ID: mdl-35378057

ABSTRACT

Multiple introductions of SARS-COV-2 Omicron variant BA.1 and BA.1.1. lineages to Finland were detected in early December 2021. Within 3 weeks, Omicron overtook Delta as the most common variant in the capital region. Sequence analysis demonstrated the emergence and spread through community transmission of a large cluster of BA.1.1 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Finland/epidemiology , Humans , SARS-CoV-2/genetics
6.
Water Res ; 215: 118220, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35248908

ABSTRACT

Wastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.3 million inhabitants (∼ 60% of the Finnish population). Quantity of SARS-CoV-2 RNA fragments in 24 h-composite samples was determined by using the ultrafiltration method followed by nucleic acid extraction and CDC N2 RT-qPCR assay. SARS-CoV-2 RNA signals at each WWTP were compared over time to the numbers of confirmed COVID-19 cases (14-day case incidence rate) in the sewer network area. Over the 10-month surveillance period with an extensive total number of samples, the detection rate of SARS-CoV-2 RNA in WW was 79% (including 6% uncertain results, i.e., amplified only in one out of four, two original and two ten-fold diluted replicates), while only 24% of all samples exhibited gene copy numbers above the quantification limit. The range of the SARS-CoV-2 detection rate in WW varied from 33% (including 10% uncertain results) in Pietarsaari to 100% in Espoo. Only six out of 693 WW samples were positive with SARS-COV-2 RNA when the reported COVID-19 case number from the preceding 14 days was zero. Overall, the 14-day COVID-19 incidence was 7.0, 18, and 36 cases per 100 000 persons within the sewer network area when the probability to detect SARS-CoV-2 RNA in wastewater samples was 50%, 75% and 95%, respectively. The quantification of SARS-CoV-2 RNA required significantly more COVID-19 cases: the quantification rate was 50%, 75%, and 95% when the 14-day incidence was 110, 152, and 223 COVID-19 cases, respectively, per 100 000 persons. Multiple linear regression confirmed the relationship between the COVID-19 incidence and the SARS-CoV-2 RNA quantified in WW at 15 out of 28 WWTPs (overall R2 = 0.36, p < 0.001). At four of the 13 WWTPs where a significant relationship was not found, the SARS-CoV-2 RNA remained below the quantification limit during the whole study period. In the five other WWTPs, the sewer coverage was less than 80% of the total population in the area and thus the COVID-19 cases may have been inhabitants from the areas not covered. Based on the results obtained, WW-based surveillance of SARS-CoV-2 could be used as an indicator for local and national COVID-19 incidence trends. Importantly, the determination of SARS-CoV-2 RNA fragments from WW is a powerful and non-invasive public health surveillance measure, independent of possible changes in the clinical testing strategies or in the willingness of individuals to be tested for COVID-19.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Finland/epidemiology , Humans , Incidence , RNA, Viral , SARS-CoV-2
7.
Sci Rep ; 11(1): 20363, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645929

ABSTRACT

COVID-19 diagnostics was quickly ramped up worldwide early 2020 based on the detection of viral RNA. However, based on the scientific knowledge for pre-existing coronaviruses, it was expected that the SARS-CoV-2 RNA will be detected from symptomatic and at significant rates also from asymptomatic individuals due to persistence of non-infectious RNA. To increase the efficacy of diagnostics, surveillance, screening and pandemic control, rapid methods, such as antigen tests, are needed for decentralized testing and to assess infectiousness. A novel automated mariPOC SARS-CoV-2 test was developed for the detection of conserved structural viral nucleocapsid proteins. The test utilizes sophisticated optical laser technology for two-photon excitation and individual detection of immunoassay solid-phase particles. We validated the new method against qRT-PCR. Sensitivity of the test was 100.0% (13/13) directly from nasopharyngeal swab specimens and 84.4% (38/45) from swab specimens in undefined transport mediums. Specificity of the test was 100.0% (201/201). The test's limit of detection was 2.7 TCID50/test. It showed no cross-reactions. Our study shows that the new test can detect infectious individuals already in 20 min with clinical sensitivity close to qRT-PCR. The mariPOC is a versatile platform for syndromic testing and for high capacity infection control screening of infectious individuals.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Adult , Aged , Antigens, Viral/analysis , COVID-19/immunology , Cross Reactions/immunology , Female , Finland/epidemiology , Humans , Immunoassay/methods , Male , Middle Aged , Nasopharynx/virology , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
8.
Emerg Infect Dis ; 27(12): 3137-3141, 2021 12.
Article in English | MEDLINE | ID: mdl-34708686

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Finland/epidemiology , Humans , Incidence , Phylogeny
9.
Microbiol Spectr ; 9(1): e0003521, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34431686

ABSTRACT

The gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection diagnosis is reverse transcription (RT)-PCR from a nasopharyngeal swab specimen (NPS). Its collection involves close contact between patients and health care workers, requiring a significant amount of workforce and putting them at risk of infection. We evaluated self-collection of alternative specimens and compared their sensitivity and cycle threshold (CT) values to those of NPS. We visited acute coronavirus disease 2019 (COVID-19) outpatients to collect concomitant NPS and gargle specimens and had patients self-collect gargle and either sputum or spit specimens the next morning. We included 40 patients and collected 40 concomitant NPS and gargle specimens, as well as 40 gargle, 22 spit, and 16 sputum specimens the next day (2 patients could not produce sputum). All specimens were as sensitive as NPS. Gargle specimens had a sensitivity of 0.97 (95% confidence interval [CI], 0.92 to 1.00), whether collected concomitantly with NPS or the next morning. Next-morning spit and sputum specimens showed sensitivities of 1.00 (95% CI, 1.00 to 1.00) and 0.94 (95% CI, 0.87 to 1.00]), respectively. The gargle specimens had significantly higher mean CT values of 29.89 (standard deviation [SD], 4.63; P < 0.001) and 29.25 (SD, 3.99; P < 0.001) when collected concomitantly and the next morning, respectively, compared to NPS (22.07 [SD, 4.63]). CT values obtained with spit (23.51 [SD, 4.57]; P = 0.11) and sputum (25.82 [SD, 9.21]; P = 0.28) specimens were close to those of NPS. All alternative specimen collection methods were as sensitive as NPS, but spit collection appeared more promising, with a low CT value and ease of collection. Our findings warrant further investigation. IMPORTANCE Control of the COVID-19 pandemic relies heavily on a test-trace-isolate strategy. The most commonly used specimen for diagnosis of SARS-CoV-2 infection is a nasopharyngeal swab. However, this method is quite uncomfortable for the patient, requires specific equipment (nose swabs and containers), and requires close proximity to health care workers, putting them at risk of infection. Developing alternative sampling strategies could decrease the burden for health care workers, help overcome potential shortages of equipment, and improve acceptability of testing by reducing patient discomfort.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Sputum/virology , Adult , Diagnostic Tests, Routine , Female , Humans , Male , Middle Aged , Nasopharynx , Respiratory System/virology , Saliva
10.
Euro Surveill ; 26(30)2021 07.
Article in English | MEDLINE | ID: mdl-34328076

ABSTRACT

An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) spread from one inpatient in a secondary care hospital to three primary care facilities, resulting in 58 infections including 18 deaths in patients and 45 infections in healthcare workers (HCW). Only one of the deceased cases was fully vaccinated. Transmission occurred despite the use of personal protective equipment by the HCW, as advised in national guidelines, and a high two-dose COVID-19 vaccination coverage among permanent staff members in the COVID-19 cohort ward.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Disease Outbreaks , Finland/epidemiology , Health Personnel , Hospitals , Humans , Secondary Care
11.
Euro Surveill ; 26(16)2021 04.
Article in English | MEDLINE | ID: mdl-33890566

ABSTRACT

We compared 19,207 cases of SARS-CoV-2 variant B.1.1.7/S gene target failure (SGTF), 436 B.1.351 and 352 P.1 to non-variant cases reported by seven European countries. COVID-19 cases with these variants had significantly higher adjusted odds ratios for hospitalisation (B.1.1.7/SGTF: 1.7, 95% confidence interval (CI): 1.0-2.9; B.1.351: 3.6, 95% CI: 2.1-6.2; P.1: 2.6, 95% CI: 1.4-4.8) and B.1.1.7/SGTF and P.1 cases also for intensive care admission (B.1.1.7/SGTF: 2.3, 95% CI: 1.4-3.5; P.1: 2.2, 95% CI: 1.7-2.8).


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Care , Europe/epidemiology , Humans
12.
Sci Total Environ ; 770: 145274, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33513496

ABSTRACT

Wastewater-based surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is used to monitor the population-level prevalence of the COVID-19 disease. In many cases, due to lockdowns or analytical delays, the analysis of wastewater samples might only be possible after prolonged storage. In this study, the effect of storage conditions on the RNA copy numbers of the SARS-CoV-2 virus in wastewater influent was studied and compared to the persistence of norovirus over time at 4 °C, -20 °C, and -75 °C using the reverse-transcription quantitative PCR (RT-qPCR) assays E-Sarbeco, N2, and norovirus GII. For the first time in Finland, the presence of SARS-CoV-2 RNA was tested in 24 h composite influent wastewater samples collected from Viikinmäki wastewater treatment plant, Helsinki, Finland. The detected and quantified SARS-CoV-2 RNA copy numbers of the wastewater sample aliquots taken during 19-20 April 2020 and stored for 29, 64, and 84 days remained surprisingly stable. In the stored samples, the SARS betacoronavirus and SARS-CoV-2 copy numbers, but not the norovirus GII copy numbers, seemed slightly higher when analyzed from the pre-centrifuged pellet-that is, the particulate matter of the influent-as compared with the supernatant (i.e., water fraction) used for ultrafiltration, although the difference was not statistically significant. Furthermore, when wastewater was spiked with SARS-CoV-2, linear decay at 4 °C was observed on the first 28 days, while no decay was visible within 58 days at -20 °C or -75 °C. In conclusion, freezing temperatures should be used for storage when immediate SARS-CoV-2 RNA analysis from the wastewater influent is not possible. Analysis of the particulate matter of the sample, in addition to the water fraction, can improve the detection frequency.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Communicable Disease Control , Finland , Humans , RNA, Viral , Wastewater
13.
Vaccine ; 39(2): 402-411, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33246672

ABSTRACT

BACKGROUND: Avian influenza A(H5N1) viruses have caused sporadic infections in humans and thus they pose a significant global health threat. Among symptomatic patients the case fatality rate has been ca. 50%. H5N1 viruses exist in multiple clades and subclades and several candidate vaccines have been developed to prevent A(H5N1) infection as a principal measure for preventing the disease. METHODS: Serum antibodies against various influenza A(H5N1) clade viruses were measured in adults by ELISA-based microneutralization and haemagglutination inhibition tests before and after vaccination with two different A(H5N1) vaccines in 2009 and 2011. RESULTS: Two doses of AS03-adjuvanted A/Indonesia/5/2005 vaccine induced good homologous but poor heterologous neutralizing antibody responses against different clade viruses. However, non-adjuvanted A/Vietnam/1203/2004 booster vaccination in 2011 induced very strong and long-lasting homologous and heterologous antibody responses while homologous response remained weak in naïve subjects. CONCLUSIONS: Sequential vaccination with two different A(H5N1) pre-pandemic vaccines induced long-lasting high level cross-clade immunity against influenza A(H5N1) strains, thus supporting a prime-boost vaccination strategy in pandemic preparedness plans.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Adult , Animals , Antibodies, Viral , Antibody Formation , Humans , Influenza, Human/prevention & control , Pandemics , Vaccination
14.
J Clin Virol ; 129: 104535, 2020 08.
Article in English | MEDLINE | ID: mdl-32652478

ABSTRACT

Picornaviruses (family Picornaviridae) are small, nonenveloped, positive-sense, single-stranded RNA viruses. The members of this family are currently classified into 47 genera and 110 species. Of picornaviruses, entero- and parechoviruses are associated with aseptic meningitis. They are transmitted via fecal-oral and respiratory routes, and occasionally, these viruses may cause a brief viremia and gain access to central nervous system (CNS). During the diagnostic screening of entero- and parechovirus types in Finland in year 2013-14, we detected a cluster of echovirus 4 (E4) infections in young adults and adolescents. As E4 is infrequently detected in Finland, we contacted several Northern and Central European laboratories that conduct routine surveillance for enteroviruses and, for those who have had E4 cases, we send a query for E4 sequences and data. Here we report CNS infections caused by E4 in Finland, Sweden, Norway, Denmark, Iceland and Germany in 2013 and 2014, and show that the E4 detected in these countries form a single lineage. In contrast, E4 strains circulating in these countries preceding the year 2013, and those circulating elsewhere in Europe during 2013-2014, formed several independent clusters.


Subject(s)
Echovirus Infections , Meningitis, Aseptic , Adolescent , Disease Outbreaks , Echovirus Infections/epidemiology , Enterovirus B, Human , Europe , Finland , Germany , Humans , Meningitis, Aseptic/epidemiology , Norway , Phylogeny , Sweden , Young Adult
15.
Euro Surveill ; 25(11)2020 03.
Article in English | MEDLINE | ID: mdl-32209163

ABSTRACT

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/genetics , Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Travel , Adult , Antibodies, Viral/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Finland , Fluorescent Antibody Technique , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins
16.
J Infect ; 80(1): 76-83, 2020 01.
Article in English | MEDLINE | ID: mdl-31580869

ABSTRACT

OBJECTIVES: To determine occurrence of residual rotavirus (RV) disease in different age groups in Finland after five to nine years of high coverage (≥90%) mass-vaccination with RotaTeqⓇ vaccine, and to examine the vaccine effect on circulating genotypes. METHODS: Since 2013 all clinical laboratories in the country were obliged to send RV positive stool samples for typing. RVs were genotyped by RT-PCR for VP7 and VP4 proteins, sequenced and compared to reference strains. RESULTS: RV continued to circulate throughout the study period at low level with a small increase in 2017-2018. There were three age-related clusters: young children representing primary or secondary vaccine failures, school-age children who may not have been vaccinated, and the elderly. Genotype distribution differed from the pre-vaccination period with a steady decline of G1P[8], emergence of G9P[8] and especially more recently G12P[8]. In the elderly, G2P[4] was predominant but was also replaced by G12P[8] in 2017-18. CONCLUSIONS: RV vaccination with a high coverage keeps RV disease at low level but does not prevent RV circulation. New RV genotypes have emerged replacing largely the previously predominant G1P[8]. Increase of overall RV activity with emergence of G12P[8] in the latest follow-up season 2017-18 might be a potential alarm sign.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Adult , Aged , Child , Child, Preschool , Feces , Finland/epidemiology , Genotype , Humans , Infant , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Vaccination
17.
Vaccine ; 37(20): 2731-2740, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30954308

ABSTRACT

Influenza A(H1N1)pdm09 viruses have been circulating throughout the world since the 2009 pandemic. A/California/07/2009 (H1N1) virus was included in seasonal influenza vaccines for seven years altogether, providing a great opportunity to analyse vaccine-induced immunity in relation to the postpandemic evolution of the A(H1N1)pdm09 virus. Serum antibodies against various epidemic strains of influenza A(H1N1)pdm09 viruses were measured among health care workers (HCWs) by haemagglutination inhibition and microneutralization tests before and after 2010 and 2012 seasonal influenza vaccinations. We detected high responses of vaccine-induced neutralizing antibodies to six distinct genetic groups. Our results indicate antigenic similarity between vaccine and circulating A(H1N1)pdm09 strains, and substantial vaccine-induced immunity against circulating epidemic viruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Humoral , Influenza A Virus, H1N1 Subtype/classification , Neutralization Tests , Phylogeny , Seasons , Serologic Tests , Structure-Activity Relationship , Vaccination
18.
BMC Infect Dis ; 18(1): 437, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157776

ABSTRACT

BACKGROUND: International and national travelling has made the rapid spread of infectious diseases possible. Little information is available on the role of major traffic hubs, such as airports, in the transmission of respiratory infections, including seasonal influenza and a pandemic threat. We investigated the presence of respiratory viruses in the passenger environment of a major airport in order to identify risk points and guide measures to minimize transmission. METHODS: Surface and air samples were collected weekly at three different time points during the peak period of seasonal influenza in 2015-16 in Finland. Swabs from surface samples, and air samples were tested by real-time PCR for influenza A and B viruses, respiratory syncytial virus, adenovirus, rhinovirus and coronaviruses (229E, HKU1, NL63 and OC43). RESULTS: Nucleic acid of at least one respiratory virus was detected in 9 out of 90 (10%) surface samples, including: a plastic toy dog in the children's playground (2/3 swabs, 67%); hand-carried luggage trays at the security check area (4/8, 50%); the buttons of the payment terminal at the pharmacy (1/2, 50%); the handrails of stairs (1/7, 14%); and the passenger side desk and divider glass at a passport control point (1/3, 33%). Among the 10 respiratory virus findings at various sites, the viruses identified were: rhinovirus (4/10, 40%, from surfaces); coronavirus (3/10, 30%, from surfaces); adenovirus (2/10, 20%, 1 air sample, 1 surface sample); influenza A (1/10, 10%, surface sample). CONCLUSIONS: Detection of pathogen viral nucleic acids indicates respiratory viral surface contamination at multiple sites associated with high touch rates, and suggests a potential risk in the identified airport sites. Of the surfaces tested, plastic security screening trays appeared to pose the highest potential risk, and handling these is almost inevitable for all embarking passengers.


Subject(s)
Airports , Equipment Contamination/statistics & numerical data , Respiratory Tract Infections/virology , Viruses/isolation & purification , Adenoviridae/genetics , Adenoviridae/isolation & purification , Airports/standards , Airports/statistics & numerical data , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Finland/epidemiology , Humans , Influenza, Human/transmission , Influenza, Human/virology , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Tract Infections/transmission , Rhinovirus/genetics , Rhinovirus/isolation & purification , Touch , Travel/statistics & numerical data , Travel-Related Illness , Viruses/genetics
19.
J Clin Virol ; 101: 11-17, 2018 04.
Article in English | MEDLINE | ID: mdl-29414181

ABSTRACT

Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the consensus view of this multidisciplinary team including experts from over 20 European countries. We recommend that respiratory and stool samples in addition to cerebrospinal fluid (CSF) and blood samples are submitted for EV testing from patients with suspected neurological infections. This is vital since viruses like EV-D68 are rarely detectable in CSF or stool samples. Furthermore, reverse transcriptase PCR (RT-PCR) targeting the 5'noncoding regions (5'NCR) should be used for diagnosis of EVs due to their sensitivity, specificity and short turnaround time. Sequencing of the VP1 capsid protein gene is recommended for EV typing; EV typing cannot be based on the 5'NCR sequences due to frequent recombination events and should not rely on virus isolation. Effective and standardized laboratory diagnostics and characterisation of circulating virus strains are the first step towards effective and continuous surveillance activities, which in turn will be used to provide better estimation on EV disease burden.


Subject(s)
Central Nervous System Infections/virology , Diagnostic Techniques and Procedures/standards , Enterovirus Infections/diagnosis , Enterovirus/classification , Respiratory Tract Infections/virology , Capsid Proteins/genetics , Central Nervous System Infections/blood , Central Nervous System Infections/cerebrospinal fluid , Central Nervous System Infections/diagnosis , Diagnostic Techniques and Procedures/trends , Enterovirus/genetics , Enterovirus/isolation & purification , Enterovirus A, Human/classification , Enterovirus A, Human/genetics , Enterovirus A, Human/isolation & purification , Enterovirus D, Human/classification , Enterovirus D, Human/genetics , Enterovirus D, Human/isolation & purification , Enterovirus Infections/blood , Enterovirus Infections/cerebrospinal fluid , Enterovirus Infections/virology , Europe , Feces/virology , RNA, Viral/genetics , Respiratory Tract Infections/blood , Respiratory Tract Infections/cerebrospinal fluid , Respiratory Tract Infections/diagnosis
20.
Euro Surveill ; 22(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28840826

ABSTRACT

One imported and five secondary cases of measles were detected in Finland between June and August 2017. The measles sequences available for five laboratory-confirmed cases were identical and belonged to serotype D8. The large number of potentially exposed Finnish and foreign individuals called for close cooperation of national and international public health authorities and other stakeholders. Raising awareness among healthcare providers and ensuring universally high vaccination coverage is crucial to prevent future clusters and outbreaks.


Subject(s)
Contact Tracing , Disease Outbreaks , Measles virus/isolation & purification , Measles/epidemiology , Travel , Adolescent , Adult , Disease Outbreaks/prevention & control , Finland/epidemiology , Humans , Measles/diagnosis , Measles/transmission , Measles virus/classification , Public Health , Serogroup , Serotyping , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...