Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 12611, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537183

ABSTRACT

Housing prefabrication emerged as an energy and cost-saving solution, which can also be linked to the reduction of environmental impacts, as well as to the development of green construction practices. In the first part of this study, a comprehensive literature review of the prefabricated assembly methods and their inherent potential, in terms of both design and construction are presented. Design strategies that incorporate the integration of environmental systems are also considered. A classification and taxonomy of archetypes is included, based on key design principles pertaining to environmental design. Based on the conclusions drawn from the assessment of these considerations, this paper revisits the realm of design and construction techniques used in energy efficient and environmentally compatible prefabricated housing unit in a Cypriot context. Cost-saving strategies are proposed, as well as architectural design and fabrication recommendations. Consequently, the research aims to contribute to existing literature by drawing results from an actual demonstration project in Cyprus. It goes on to outline considerations affecting the front end of the design and construction processes based on criteria for efficient prefabrication and modular construction. Findings are then related to simulations for energy and daylighting performance supplemented by a techno-economic analysis, aiming to demonstrate the viability of this enterprise. In this way it is hoped that stakeholders considering the adoption of this approach to design and construction may make better informed and more appropriate decisions.

2.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903979

ABSTRACT

The Troodos mountains in Cyprus are a hotspot of plant diversity and cultural heritage. However, the traditional uses of medicinal and aromatic plants (MAPs), a significant aspect of local culture, have not been thoroughly studied. The aim of this research was to document and analyze the traditional uses of MAPs in Troodos. Data on MAPs and their traditional uses were collected through interviews. A database was constructed with categorized information on the uses of 160 taxa belonging to 63 families. The quantitative analysis included the calculation and comparison of six indices of ethnobotanical importance. The cultural value index was selected to reveal the most culturally significant MAPs taxa, while the informant consensus index was utilized to quantify the consensus in information obtained related to uses of MAPs. Furthermore, the 30 most popular MAPs taxa, exceptional and fading uses, and the plant parts used for different purposes are described and reported. The results reveal a deep connection between the people of Troodos and the plants of the area. Overall, the study provides the first ethnobotanical assessment for the Troodos mountains in Cyprus, contributing to a better understanding of the diverse uses of MAPs in mountain regions of the Mediterranean.

3.
Physiol Plant ; 174(5): e13762, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36281841

ABSTRACT

Water stress may greatly limit plant functionality and growth. Stomatal closure and consequently reduced transpiration are considered as early and sensitive plant responses to drought and salinity stress. An important consequence of stomatal closure under water stress is the rise of leaf temperature (Tleaf ), yet Tleaf is not only fluctuating with stomatal closure. It is regulated by several plant parameters and environmental factors. Thermal imaging and different stress indices, incorporating actual leaf/crop temperature and reference temperatures, were developed in previous studies toward normalizing for effects unassociated to water stress on Tleaf , aiming at a more efficient water stress assessment. The concept of stress indices has not been extensively studied on the model plant Arabidopsis thaliana. Therefore, the aim of this study was to examine the different indices employed in previous studies in assessing rosette transpiration rate (E) in Arabidopsis plants grown under two different light environments and subjected to salinity. After salinity imposition, E was gravimetrically quantified, and thermal imaging was employed to quantify rosette (Trosette ) and artificial reference temperature (Twet, Tdry ). Trosette and several water stress indices were tested for their relation to E. Among the microclimatic growth conditions tested, RWSI1 ([Trosette - Twet ]/[Tdry - Twet ]) and RWSI2 ([Tdry - Trosette ]/[Tdry - Twet ]) were well linearly-related to E, irrespective of the light environment, while the sole use of either Twet or Tdry in different combinations with Trosette returned less accurate results. This study provides evidence that selected combinations of Trosette , Tdry , and Twet can be utilized to assess E under water stress irrespective of the light environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Plant Stomata/physiology , Dehydration , Droughts , Plant Leaves/physiology , Plants , Plant Transpiration/physiology
4.
Front Plant Sci ; 9: 548, 2018.
Article in English | MEDLINE | ID: mdl-29740471

ABSTRACT

The development of technology, like the widely-used off-the-shelf portable photosynthesis systems, for the quantification of leaf gas exchange rates and chlorophyll fluorescence offered photosynthesis research a massive boost. Gas exchange parameters in such photosynthesis systems are calculated as gas exchange rates per unit leaf area. In small chambers (<10 cm2), the leaf area used by the system for these calculations is actually the internal gasket area (AG), provided that the leaf covers the entire AG. In this study, we present two inexpensive and non-destructive techniques that can be used to easily quantify the enclosed leaf area (AL) of plant species with leaves of surface area much smaller than the AG, such as that of cereal crops. The AL of the cereal crop species studied has been measured using a standard image-based approach (iAL) and estimated using a leaf width-based approach (wAL). iAL and wAL did not show any significant differences between them in maize, barley, hard and soft wheat. Similar results were obtained when the wAL was tested in comparison with iAL in different positions along the leaf in all species studied. The quantification of AL and the subsequent correction of leaf gas exchange parameters for AL provided a precise quantification of net photosynthesis and stomatal conductance especially with decreasing AL. This study provides two practical, inexpensive and non-destructive solutions to researchers dealing with photosynthesis measurements on small-leaf plant species. The image-based technique can be widely used for quantifying AL in many plant species despite their leaf shape. The leaf width-based technique can be securely used for quantifying AL in cereal crop species such as maize, wheat and barley along the leaf. Both techniques can be used for a wide range of gasket shapes and sizes with minor technique-specific adjustments.

5.
Planta ; 247(3): 573-585, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29124326

ABSTRACT

MAIN CONCLUSION: AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.


Subject(s)
Mycorrhizae/physiology , Poaceae/physiology , Stress, Physiological , Biomass , Chlorophyll/physiology , Plant Leaves/chemistry , Plant Leaves/physiology , Plant Roots/microbiology , Plant Transpiration/physiology , Poaceae/microbiology , Salinity , Soil , Water/analysis
6.
Methods Mol Biol ; 1694: 155-161, 2018.
Article in English | MEDLINE | ID: mdl-29080166

ABSTRACT

Reactive oxygen, nitrogen and sulfur species are key signalling molecules involved in multiple physiological processes that can be examined in qualitative and quantitative manners. Here, we describe simple spectrophotometric assays that allow the quantification of hydrogen peroxide, nitrite-derived nitric oxide and hydrogen sulphide from plant tissues.


Subject(s)
Plants/chemistry , Reactive Nitrogen Species/analysis , Reactive Oxygen Species/analysis , Spectrophotometry , Sulfur/analysis , Hydrogen Peroxide , Hydrogen Sulfide , Nitric Oxide , Spectrophotometry/methods
7.
Plant Cell Environ ; 40(1): 69-79, 2017 01.
Article in English | MEDLINE | ID: mdl-27640366

ABSTRACT

Many studies investigated temperature effects on leaf initiation and expansion by relating these processes to air temperature or the temperature of a specific organ (e.g. leaf temperature). In reality plant temperature is hardly ever equal to air temperature or spatially uniform. Apical bud temperature (Tbud ), for example, may greatly differ from the temperature of the rest of the plant (Tplant ) dependent on the environment. Recent research in Cucumis sativus showed that Tbud influences leaf initiation independent of Tplant . These findings trigger the question if such spatial temperature differences also influence leaf expansion and plant phenotype. In a 28 day study, we maintained temperature differences between Tbud and Tplant ranging from -7 to +8 °C using a custom-made bud temperature control system. Leaf expansion did not only depend on leaf temperature but also on the difference between bud and leaf temperature. Differences between Tbud and Tplant considerably influenced vertical leaf area distribution over the shoot: increasing Tbud beyond Tplant resulted in more and smaller leaves, while decreasing Tbud below Tplant resulted in less and larger leaves. The trade-off between leaf number and leaf area resulted in phenotypic alterations that cannot be predicted, for example, by crop models, when assuming plant temperature uniformity.


Subject(s)
Cucumis sativus/physiology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Temperature , Biomass , Cucumis sativus/growth & development , Phenotype , Plant Development
8.
Curr Opin Plant Biol ; 33: 101-107, 2016 10.
Article in English | MEDLINE | ID: mdl-27419886

ABSTRACT

Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement.


Subject(s)
Gene Expression Regulation, Plant , Plant Physiological Phenomena , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Sulfur Compounds/metabolism , Plants/genetics , Plants/metabolism , Stress, Physiological
9.
Planta ; 243(4): 1071-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26769623

ABSTRACT

MAIN CONCLUSION: Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs. We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies in dicots have not rigorously demonstrated that apical bud temperature controls LIR independent of other plant organs temperature. Many models assume that apical bud and leaf temperature are the same. In some environments, the temperature of the apical bud, where leaf initiation occurs, may differ by several degrees Celsius from the temperature of other plant organs. In a 28-days study, we maintained temperature differences between the apical bud and the rest of the individual Cucumis sativus plants from -7 to +8 °C by enclosing the apical buds in transparent, temperature-controlled, flow-through, spheres. Our results demonstrate that LIR was completely determined by apical bud temperature independent of other plant organs temperature. These results emphasize the need to measure or model apical bud temperatures in dicots to improve the prediction of crop development rates in simulation models.


Subject(s)
Biology/methods , Cucumis sativus/growth & development , Plant Leaves/growth & development , Biology/instrumentation , Equipment Design , Meristem/growth & development , Temperature
10.
Trends Plant Sci ; 21(4): 329-340, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26704665

ABSTRACT

Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.


Subject(s)
Crops, Agricultural/drug effects , Hydrogen Peroxide/pharmacology , Melatonin/pharmacology , Nitroprusside/pharmacology , Polyamines/pharmacology , Stress, Physiological/drug effects , Sulfides/pharmacology , Crops, Agricultural/physiology , Stimulation, Chemical
11.
Funct Plant Biol ; 41(5): 547-556, 2014 Apr.
Article in English | MEDLINE | ID: mdl-32481012

ABSTRACT

Radiation substantially affects leaf initiation rate (LIR), a key variable for plant growth, by influencing the heat budget and therefore the temperature of the shoot apical meristem. The photosynthetically active component of solar radiation (photosynthetic photon flux density; PPFD) is critical for plant growth and when at shade to moderate levels may also influence LIR via limited photosynthate availability. Cucumber and tomato plants were subjected to different PPFDs (2.5-13.2molm-2 day-1) and then LIR, carbohydrate content and diel net CO2 uptake of the apical bud were quantified. LIR showed saturating response to increasing PPFD in both species. In this PPFD range, LIR was reduced by 20% in cucumber and by 40% in tomato plants. Carbohydrate content and dark respiration were substantially reduced at low PPFD. LIR may be considered as an adaptive trait of plants to low light levels, which is likely to be determined by the local photosynthate availability. In tomato and cucumber plants, LIR can be markedly reduced at low PPFD in plant production systems at high latitudes, suggesting that models solely based on thermal time may not precisely predict LIR at low PPFD.

12.
Plant Cell Environ ; 36(11): 1950-60, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23509944

ABSTRACT

Meristem temperature (Tmeristem ) drives plant development but is hardly ever quantified. Instead, air temperature (Tair ) is usually used as its approximation. Meristems are enclosed within apical buds. Bud structure and function may differ across species. Therefore, Tmeristem may deviate from Tair in a species-specific way. Environmental variables (air temperature, vapour pressure deficit, radiation, and wind speed) were systematically varied to quantify the response of Tmeristem . This response was related to observations of bud structure and transpiration. Tomato and cucumber plants were used as model plants as they are morphologically distinct and usually growing in similar environments. Tmeristem substantially deviated from Tair in a species-specific manner under moderate environments. This deviation ranged between -2.6 and 3.8 °C in tomato and between -4.1 and 3.0 °C in cucumber. The lower Tmeristem observed in cucumber was linked with the higher transpiration of the bud foliage sheltering the meristem when compared with tomato plants. We here indicate that for properly linking growth and development of plants to temperature in future applications, for instance in climate change scenarios studies, Tmeristem should be used instead of Tair , as a species-specific trait highly reliant on various environmental factors.


Subject(s)
Air , Cucumis sativus/physiology , Meristem/physiology , Solanum lycopersicum/physiology , Temperature , Climate , Flowers/physiology , Plant Transpiration/physiology , Species Specificity , Vapor Pressure
13.
J Exp Bot ; 63(3): 1135-43, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22121201

ABSTRACT

Long-term effects of light quality on leaf hydraulic conductance (K(leaf)) and stomatal conductance (g(s)) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640 nm), blue (B, 420 nm) or combined red and blue (R:B, 70:30) light. K(leaf) and g(s) were much lower in leaves that developed without blue light. Differences in g(s) were caused by differences in stomatal aperture and stomatal density, of which the latter was largely due to differences in epidermal cell size and hardly due to stomatal development. Net photosynthesis (A(N)) was lowest in R-, intermediate in B-, and highest in RB- grown leaves. The low A(N) in R-grown leaves correlated with a low leaf internal CO(2) concentration and reduced PSII operating efficiency. In response to osmotic stress, all leaves showed similar degrees of stomatal closure, but the reduction in A(N) was larger in R- than in B- and RB-grown leaves. This was probably due to damage of the photosynthetic apparatus, which only occurred in R-grown leaves. The present study shows the co-ordination of K(leaf) and g(s) across different light qualities, while the presence of blue in the light spectrum seems to drive both K(leaf) and g(s) towards high, sun-type leaf values, as was previously reported for maximal photosynthetic capacity and leaf morphology. The present results suggest the involvement of blue light receptors in the usually harmonized development of leaf characteristics related to water relations and photosynthesis under different light environments.


Subject(s)
Cucumis sativus/metabolism , Cucumis sativus/radiation effects , Light , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Stomata/metabolism , Plant Stomata/radiation effects , Photosynthesis/radiation effects , Plant Transpiration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...