Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e15337, 2023.
Article in English | MEDLINE | ID: mdl-37483985

ABSTRACT

To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.


Subject(s)
Bacillus subtilis , Foreign Bodies , Spiders , Animals , Female , Bacillus subtilis/immunology , Foreign Bodies/immunology , Spiders/genetics , Spiders/immunology , Spiders/microbiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Age Factors , Gene Expression Regulation/immunology , Apoptosis/immunology , Hemocytes/immunology
2.
Gen Comp Endocrinol ; 308: 113781, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33862048

ABSTRACT

The juvenile hormone (JH) plays a crucial role in arthropod physiological processes, e.g., the regulation of metamorphosis, development, and reproduction (the vitellogenesis, the development of gonads, egg production). Still, data about this sesquiterpenoid hormone in spiders (Araneae) are rudimentary and equivocal. The presence of the JH or its precursors (e.g. methyl farnesoate) is not confirmed in spiders. The site of synthesis of its is still undetermined. No receptors of the JH are identified in spiders and thus, the molecular mechanism of action of this group of hormones is still unknown. Here we show by using the phylogenetic analysis and qPCR method the presence of the transcript of the enzyme catalyzing the last phase of the JH biosynthesis pathway (epox CYP15A1), the JH receptor (Met), and a possible candidate to the methyl farnesoate receptor (USP) in the various tissues and stages of ontogenesis in both sexes of spider Parasteatoda tepidariorum. Our results indicate that the juvenile hormone and/or methyl farnesoate presence is possible in the species of spider P. tepidariorum. The presence of the Ptepox CYP15A1 gene suggests that the main site of the juvenile hormone synthesis can be the integument and not the Schneider organ 2. It also seems that the juvenile hormone and/or methyl farnesoate can be hormones with biological activity due to the presence of the transcript of insect and crustacean JH/MG receptor - Met. The Ptepox CYP15A1, PtMet, and Ptusp expression are sex-, tissue-and time-specific. This study is the first report about the presence of the Ptepox CYP15A1 and PtMet transcripts in the Arachnida, which may indicate the presence of the juvenile hormone and/or methyl farnesoate in spiders.


Subject(s)
Juvenile Hormones , Spiders , Animals , Female , Juvenile Hormones/metabolism , Male , Metamorphosis, Biological , Phylogeny , Spiders/genetics , Spiders/metabolism , Vitellogenesis
3.
PLoS One ; 14(9): e0222274, 2019.
Article in English | MEDLINE | ID: mdl-31504071

ABSTRACT

Allatoregulatory neuropeptides are multifunctional proteins that take part in the synthesis and secretion of juvenile hormones. In insects, allatostatins are inhibitors of juvenile hormone biosynthesis in the corpora allata while allatotropins, act as stimulators. By quantitative real-time PCR, we analyzed the gene expression of allatostatin A (PtASTA), allatostatin B (PtASTB), allatostatin C (PtASTC), allatotropin (PtAT) and their receptors (PtASTA-R, PtASTB-R, PtASTC-R, PtAT-R) in various tissues in different age groups of female spiders. In the presented manuscript, the presence of allatostatin A, allatostatin C, and allatotropin are reported in females of the spider P. tepidariorum. The obtained results indicated substantial differences in gene expression levels for allatoregulatory neuropeptides and their receptors in the different tissues. Additionally, the gene expression levels also varied depending on the female age. Strong expression was observed coinciding with sexual maturation in the neuroendocrine and nervous system, and to a lower extent in the digestive tissues and ovaries. Reverse trends were observed for the expression of genes encoding the receptors of these neuropeptides. In conclusion, our study is the first hint that the site of synthesis and secretion is fulfilled by similar structures as observed in other arthropods. In addition, the results of the analysis of spider physiology give evidence that the general functions like regulation of the juvenile hormone synthesis, regulation of the digestive tract and ovaries action, control of vitellogenesis process by the neuropeptides seem to be conserved among arthropods and are the milestone to future functional studies.


Subject(s)
Insect Proteins/genetics , Neuropeptides/genetics , Spiders/genetics , Aging/genetics , Animals , Female , Organ Specificity , Spiders/growth & development , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...