Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Neurosci Lett ; 833: 137829, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38788796

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has been reported to be affected by inflammatory cells, such as microglia and macrophages, through the concept of non-cell autonomous neuronal death. Resident microglia in the human brain and monocyte-derived macrophages (MoDM) infiltrating in tissues are difficult to distinguish. Therefore, the effects of microglia and MoDMs in ALS remain poorly understood. This study aimed to investigate the role of resident microglia and MoDMs in the pathogenesis of ALS using postmortem brain and spinal cord samples. The samples used for immunohistochemical analysis included 11 cases of sporadic ALS and 11 age-matched controls. We stained the cells with TMEM119 to detect resident microglia and CCR2 to detect MoDMs. In ALS cases, TMEM119-immunopositive resident microglia were abundant in the motor cortex and subcortical white matter (SWM) of the motor area, whereas CCR2-immunopositive MoDM was similar to control cases. In addition, the mean density of CD68-immunopositive cells in the SWM significantly correlated with the mean density of pTDP-43-positive GCIs. These results suggest that resident microglial activation plays an important role in the cerebral pathogenesis of ALS and may provide novel therapeutic strategies to target excessive activation of resident microglia in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain , Membrane Proteins , Microglia , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Microglia/metabolism , Microglia/pathology , Male , Female , Aged , Middle Aged , Membrane Proteins/metabolism , Brain/pathology , Brain/metabolism , Macrophages/metabolism , Macrophages/pathology , Receptors, CCR2/metabolism , White Matter/pathology , White Matter/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Aged, 80 and over
2.
J Neurosurg Case Lessons ; 7(14)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560927

ABSTRACT

BACKGROUND: The ventral intermediate nucleus (Vim) of the thalamus is a surgical target for treating various types of tremor. Because it is difficult to visualize the Vim using standard magnetic resonance imaging, the structure is usually targeted based on the anterior and posterior commissures. This standard targeting method is practical in most patients but not in those with thalamic asymmetry. The authors examined the usefulness of quantitative susceptibility mapping (QSM) and transformed Vim atlas images to estimate the Vim localization in a patient with tremor and significant thalamic hypertrophy. OBSERVATIONS: A 51-year-old right-handed female had experienced a predominant left-hand action tremor for 6 years. Magnetic resonance imaging showed significant hypertrophy of the right thalamus and caudal shift of the thalamic ventral border. The authors referred to the QSM images to localize the decreased susceptibility area within the lateral ventral thalamic nuclei to target the Vim. In addition, the nonlinearly transformed Vim atlas images complemented the imaging-based targeting. The radiofrequency thalamotomy at the modified Vim target relieved the tremor completely. LESSONS: A combination of QSM and nonlinear transformation of the thalamic atlas can be helpful in the targeting method of the Vim for tremor patients with thalamic asymmetry.

3.
Front Neurol ; 15: 1306546, 2024.
Article in English | MEDLINE | ID: mdl-38440115

ABSTRACT

Background: Dopamine transporter single-photon emission computed tomography (DAT-SPECT) is a crucial tool for evaluating patients with Parkinson's disease (PD). However, its implication is limited by inter-site variability in large multisite clinical trials. To overcome the limitation, a conventional prospective correction method employs linear regression with phantom scanning, which is effective yet available only in a prospective manner. An alternative, although relatively underexplored, involves retrospective modeling using a statistical method known as "combatting batch effects when combining batches of gene expression microarray data" (ComBat). Methods: We analyzed DAT-SPECT-specific binding ratios (SBRs) derived from 72 healthy older adults and 81 patients with PD registered in four clinical sites. We applied both the prospective correction and the retrospective ComBat correction to the original SBRs. Next, we compared the performance of the original and two corrected SBRs to differentiate the PD patients from the healthy controls. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC). Results: The original SBRs were 6.13 ± 1.54 (mean ± standard deviation) and 2.03 ± 1.41 in the control and PD groups, respectively. After the prospective correction, the mean SBRs were 6.52 ± 1.06 and 2.40 ± 0.99 in the control and PD groups, respectively. After the retrospective ComBat correction, the SBRs were 5.25 ± 0.89 and 2.01 ± 0.73 in the control and PD groups, respectively, resulting in substantial changes in mean values with fewer variances. The original SBRs demonstrated fair performance in differentiating PD from controls (Hedges's g = 2.76; AUC-ROC = 0.936). Both correction methods improved discrimination performance. The ComBat-corrected SBR demonstrated comparable performance (g = 3.99 and AUC-ROC = 0.987) to the prospectively corrected SBR (g = 4.32 and AUC-ROC = 0.992) for discrimination. Conclusion: Although we confirmed that SBRs fairly discriminated PD from healthy older adults without any correction, the correction methods improved their discrimination performance in a multisite setting. Our results support the utility of harmonization methods with ComBat for consolidating SBR-based diagnosis or stratification of PD in multisite studies. Nonetheless, given the substantial changes in the mean values of ComBat-corrected SBRs, caution is advised when interpreting them.

4.
Psychiatry Clin Neurosci ; 78(5): 322-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38414202

ABSTRACT

AIM: While conservatism bias refers to the human need for more evidence for decision-making than rational thinking expects, the jumping to conclusions (JTC) bias refers to the need for less evidence among individuals with schizophrenia/delusion compared to healthy people. Although the hippocampus-midbrain-striatal aberrant salience system and the salience, default mode (DMN), and frontoparietal networks ("triple networks") are implicated in delusion/schizophrenia pathophysiology, the associations between conservatism/JTC and these systems/networks are unclear. METHODS: Thirty-seven patients with schizophrenia and 33 healthy controls performed the beads task, with large and small numbers of bead draws to decision (DTD) indicating conservatism and JTC, respectively. We performed independent component analysis (ICA) of resting functional magnetic resonance imaging (fMRI) data. For systems/networks above, we investigated interactions between diagnosis and DTD, and main effects of DTD. We similarly applied ICA to structural and diffusion MRI to explore the associations between DTD and gray/white matter. RESULTS: We identified a significant main effect of DTD with functional connectivity between the striatum and DMN, which was negatively correlated with delusion severity in patients, indicating that the greater the anti-correlation between these networks, the stronger the JTC and delusion. We further observed the main effects of DTD on a gray matter network resembling the DMN, and a white matter network connecting the functional and gray matter networks (all P < 0.05, family-wise error [FWE] correction). Function and gray/white matter showed no significant interactions. CONCLUSION: Our results support the novel association of conservatism and JTC biases with aberrant salience and default brain mode.


Subject(s)
Decision Making , Default Mode Network , Delusions , Magnetic Resonance Imaging , Schizophrenia , Humans , Adult , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Male , Female , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Delusions/physiopathology , Delusions/diagnostic imaging , Decision Making/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , White Matter/diagnostic imaging , White Matter/physiopathology , White Matter/pathology , Middle Aged , Young Adult , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Gray Matter/pathology
6.
Int J Geriatr Psychiatry ; 38(9): e5993, 2023 09.
Article in English | MEDLINE | ID: mdl-37655505

ABSTRACT

OBJECTIVES: Neuropsychiatric symptom could be useful for detecting patients with prodromal dementia. Similarities and differences in the NPSs between preclinical/prodromal Alzheimer's disease (AD) and prodromal Parkinson's disease dementia (PDD)/Dementia with Lewy bodies (DLB) may exist. This study aimed to compare the NPSs between preclinical/prodromal AD and prodromal PDD/DLB. METHODS: One hundred and three participants without dementia aged ≥50 years were included in this study. The mild behavioral impairment (MBI) total score and the MBI scores for each domain were calculated using the neuropsychiatric inventory questionnaire score. Participants were divided into five groups based on the clinical diagnosis by neurologists or psychiatrists in each institution based on the results of the amyloid positron emission tomography and dopamine transporter single photon emission computed tomography (DAT-SPECT): Group 1: amyloid-positive and abnormal DAT-SPECT, Group 2: amyloid-negative and abnormal DAT-SPECT, Group 3: amyloid-positive and normal DAT-SPECT, Group 4: mild cognitive impairment unlikely due to AD with normal DAT-SPECT, and Group 5: cognitively normal with amyloid-negative and normal DAT-SPECT. RESULTS: The MBI abnormal perception or thought content scores were significantly higher in Group 1 than Group 5 (Bonferroni-corrected p = 0.012). The MBI total score (Bonferroni-corrected p = 0.011) and MBI impulse dyscontrol score (Bonferroni-corrected p = 0.033) in Group 4 were significantly higher than those in Group 5. CONCLUSION: The presence of both amyloid and putative Lewy body pathologies may be associated with psychotic symptoms.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Lewy Bodies , Alzheimer Disease/diagnostic imaging
7.
EClinicalMedicine ; 59: 101920, 2023 May.
Article in English | MEDLINE | ID: mdl-37256098

ABSTRACT

Background: Functionally impaired variants of COQ2, encoding an enzyme in biosynthesis of coenzyme Q10 (CoQ10), were found in familial multiple system atrophy (MSA) and V393A in COQ2 is associated with sporadic MSA. Furthermore, reduced levels of CoQ10 have been demonstrated in MSA patients. Methods: This study was a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. Patients with MSA were randomly assigned (1:1) to either ubiquinol (1500 mg/day) or placebo. The primary efficacy outcome was the change in the unified multiple system atrophy rating scale (UMSARS) part 2 at 48 weeks. Efficacy was assessed in all patients who completed at least one efficacy assessment (full analysis set). Safety analyses included patients who completed at least one dose of investigational drug. This trial is registered with UMIN-CTR (UMIN000031771), where the drug name of MSA-01 was used to designate ubiquinol. Findings: Between June 26, 2018, and May 27, 2019, 139 patients were enrolled and randomly assigned to the ubiquinol group (n = 69) or the placebo group (n = 70). A total of 131 patients were included in the full analysis set (63 in the ubiquinol group; 68 in the placebo group). This study met the primary efficacy outcome (least square mean difference in UMSARS part 2 score (-1.7 [95% CI, -3.2 to -0.2]; P = 0.023)). The ubiquinol group also showed better secondary efficacy outcomes (Barthel index, Scale for the Assessment and Rating of Ataxia, and time required to walk 10 m). Rates of adverse events potentially related to the investigational drug were comparable between ubiquinol (n = 15 [23.8%]) and placebo (n = 21 [30.9%]). Interpretation: High-dose ubiquinol was well-tolerated and led to a significantly smaller decline of UMSARS part 2 score compared with placebo. Funding: Japan Agency for Medical Research and Development.

8.
Jpn J Radiol ; 41(11): 1216-1225, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37256470

ABSTRACT

PURPOSE: Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson's disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR). MATERIALS AND METHODS: We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR. RESULTS: Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR. CONCLUSION: Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.


Subject(s)
Deep Learning , Parkinson Disease , Humans , Magnetic Resonance Imaging/methods , Substantia Nigra , Melanins , Parkinson Disease/diagnostic imaging
9.
Cereb Cortex Commun ; 4(1): tgad004, 2023.
Article in English | MEDLINE | ID: mdl-36949935

ABSTRACT

We aimed to clarify whether dopamine depletion in the posterior dorsal striatum in early-stage Parkinson's disease (PD) alters synchronized activity in the cortico-basal ganglia motor circuit. In sum, 14 PD patients and 16 matched healthy controls (HC) underwent [11C]-2-ß-carbomethoxy-3-ß-(4-fluorophenyl) tropane positron emission tomography to identify striatal dopamine-depleted areas. The identified map was applied to functional magnetic resonance imaging (fMRI) to discover abnormalities in functional connectivity (FC) during motor-task and rest-state in PD patients in the drug-off state relative to HC. Striatal dopamine-depleted areas formed synchronized fMRI activity that largely corresponded to the cortico-basal ganglia motor circuit. Group comparisons revealed that striatal dopamine-depleted areas exhibited decreased FC with the medial premotor cortex during motor-task and with the medial, lateral premotor and primary motor cortices during rest-state. Striatal dopamine-depleted areas also elucidated decreased FC in the subthalamic nucleus (STN) in PD both during motor-task and rest-state. The STN regions that exhibited reduced FC with striatal dopamine-depleted areas demonstrated excessive FC with the lateral premotor and primary motor cortices in PD only during rest-state. Our findings suggest that striatal dopamine-depleted area reduced synchronized activity with the motor cortices and STN, which, in turn, induces an abnormal increase in coupling between the areas in PD.

10.
Parkinsonism Relat Disord ; 103: 129-135, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36113390

ABSTRACT

INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is one of the most specific prodromal symptoms of synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy. The Japan Parkinson's Progression Markers Initiative (J-PPMI) was a prospective cohort study conducted in Japanese patients with iRBD to investigate biomarkers for prodromal synucleinopathies. We carried out an initial assessment of the J-PPMI study to reveal the factors correlated with dopamine transporter single-photon emission computed tomography (DaT) and 123I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy. METHODS: This cross-sectional study was conducted in 108 patients with iRBD, selected from the J-PPMI study. We divided the patients into four groups based on the MIBG and DaT results. We also recorded the patients' demographics and clinical data. Following PD probability calculation, we examined the biomarkers associated with DaT and MIBG. RESULTS: Ninety-five of the enrolled patients (88%) met the diagnostic criteria for prodromal PD based on the probability score. Only five patients had normal MIBG and DaT. We identified 29 cases with decreased DaT and MIBG, all of whom met the above diagnostic criteria. Both DaT and MIBG were significantly correlated with the Japanese version of the Montreal Cognitive Assessment (MoCA-J) score. CONCLUSION: Both DaT and MIBG are important biomarkers for confirming synucleinopathies and/or staging disease progression. Although 95% of iRBD patients were consistent with the body-first subtype concept, alpha-synuclein pathologies of iRBD might have widespread systemic involvement rather than being confined to the lower brainstem, particularly in patients with reduced MoCA-J scores.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/complications , Dopamine Plasma Membrane Transport Proteins , 3-Iodobenzylguanidine , Japan , alpha-Synuclein , Cross-Sectional Studies , Prospective Studies , Parkinson Disease/complications , Biomarkers
11.
Acta Neurochir (Wien) ; 164(9): 2309-2316, 2022 09.
Article in English | MEDLINE | ID: mdl-35851925

ABSTRACT

BACKGROUND: In deep brain stimulation (DBS) for Parkinson's disease (PD), the clinical outcome largely depends on the appropriate position of the electrode implanted in the targeted structure. In intraoperative cone-beam computed tomography (CT) performed for the evaluation of the electrode position, the metal artifact induced by the implanted electrode can prevent the precise localization of the electrode. Metal artifact reduction (MAR) techniques have been recently developed that can dramatically improve the visualization of objects by reducing metal artifacts after performing cone-beam CT. Hence, in this case series, we attempted to clarify the usefulness and accuracy of intraoperative cone-beam CT with MAR (intraCBCTwM) by comparing with both intraoperative cone-beam CT without MAR (intraCBCTwoM) and conventional postoperative CT (post-CT) for the assessment of the implanted electrode position and the intracranial structures during DBS procedures. METHODS: Between November 2019 and December 2020, 10 patients with PD who underwent DBS at our institution were recruited, and the images of 9 patients (bilateral: n = 8, unilateral: n = 1) were analyzed. The artifact index (AI) in intraCBCTwM or intraCBCTwoM, and conventional post-CT were retrospectively assessed using the standard deviation of the region-of-interest around the implanted electrodes and background noise. Additionally, the Euclidean distances gap of electrode tip based on post-CT in each fusion image was compared between intraCBCTwM and intraCBCTwoM. RESULTS: The AI was significantly lower in intraCBCTwM than in intraCBCTwoM (P < 0.01). The mean Euclidean distance between the tip of the electrode in intraCBCTwM and in post-CT was significantly shorter compared to that in intraCBCTwoM (P < 0.05). CONCLUSIONS: The results reported here suggest that intraCBCTwM is a more useful and accurate method than intraCBCTwoM to assess the implanted electrode position and intracranial structures during DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Artifacts , Cone-Beam Computed Tomography/methods , Deep Brain Stimulation/methods , Electrodes, Implanted , Humans , Parkinson Disease/surgery , Parkinson Disease/therapy , Retrospective Studies
12.
Quant Imaging Med Surg ; 12(6): 3406-3435, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35655840

ABSTRACT

Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.

13.
Ann Neurol ; 92(1): 110-121, 2022 07.
Article in English | MEDLINE | ID: mdl-35428994

ABSTRACT

OBJECTIVE: The motor severity in Parkinson disease (PD) is believed to parallel dopaminergic terminal degeneration in the striatum, although the terminal was reported to be virtually absent by 4 years postdiagnosis. Meanwhile, neuromelanin-laden dopamine neuron loss in the substantia nigra (SN) elucidated a variability at early stages and gradual loss with less variability 10 years postdiagnosis. Here, we aimed to clarify the correlation between motor impairments and striatal dopaminergic terminal degeneration and nigral neuromelanin-laden dopamine neuron loss at early to advanced stages of PD. METHODS: Ninety-three PD patients were divided into early and advanced subgroups based on motor symptom duration and whether motor fluctuation was present. Striatal dopaminergic terminal degeneration was evaluated using a presynaptic dopamine transporter tracer, 123 I-ioflupane single photon emission computed tomography (SPECT). Nigral neuromelanin-laden dopamine neuron density was assessed by neuromelanin-sensitive magnetic resonance imaging (NM-MRI). RESULTS: In patients with early stage PD (motor symptoms for ≤8 or 10 years), motor dysfunction during the drug-off state was paralleled by a decline in 123 I-ioflupane uptake in the striatum despite the absence of a correlation with reductions in NM-MRI signals in SN. Meanwhile, in patients with advanced stage PD (motor symptoms for >8 or 10 years and with fluctuation), the degree of motor deficits during the drug-off state was not correlated with 123 I-ioflupane uptake in the striatum, despite its significant negative correlation with NM-MRI signals in SN. INTERPRETATION: We propose striatal dopaminergic terminal loss measured using 123 I-ioflupane SPECT and nigral dopamine neuron loss assessed with NM-MRI as early stage and advanced stage motor impairment biomarkers, respectively. ANN NEUROL 2022;92:110-121.


Subject(s)
Parkinson Disease , Corpus Striatum/metabolism , Dopamine , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/pathology , Humans , Magnetic Resonance Imaging/methods , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/pathology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Substantia Nigra/pathology , Tomography, Emission-Computed, Single-Photon/methods
14.
Magn Reson Med ; 87(3): 1613-1620, 2022 03.
Article in English | MEDLINE | ID: mdl-34719801

ABSTRACT

PURPOSE: To demonstrate the capability of insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system. METHODS: Insertable inductively coupled volume coils with diameters of 26 and 64 mm (D26 and D64 coils) targeted for monkey and mouse brain specimen sizes were designed and fabricated. These coils were placed inside the imaging volume of a transmit/receive knee coil without wired connections to the main system. Signal-to-noise ratio (SNR) evaluations were conducted with and without the insertable coils, and the g-factor maps of parallel imaging (PI) were also calculated for the D64 coil. Brain specimens were imaged using 3D T2∗ -weighted images with spatial resolution of isotropic 50 and 160 µm using D26 and D64 coils, respectively. RESULTS: Relative average (SD) SNRs compared with knee coil alone were 12.54 (0.30) and 2.37 (0.05) at the center for the D26 and D64 coils, respectively. The mean g-factors of PI with the D64 coil for the factor of 2 were less than 1.1 in the left-right and anterior-posterior directions, and around 1.5 in the superior-inferior direction or when the PI factor of 3 was used. Acceleration in two directions showed lower g-factors but suffered from intrinsic low SNR. Representative T2∗ -weighted images of the specimen showed structural details. CONCLUSION: Inductively coupled small diameter coils insertable to the knee coil demonstrated high SNR and modest PI capability. The concept was successfully used to visualize fine structures of the brain specimen. The insertable coils are easy to handle and enable MR microscopy in a human whole-body 7T MRI system.


Subject(s)
Magnetic Resonance Imaging , Microscopy , Animals , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional , Mice , Phantoms, Imaging , Signal-To-Noise Ratio
15.
No Shinkei Geka ; 49(4): 820-828, 2021 Jul.
Article in Japanese | MEDLINE | ID: mdl-34376614

ABSTRACT

This article reviews the stereotactic targets in the posterior subthalamic area(PSA), fields H1/H2 of Forel(pallidothalamic tract), and the pedunculopontine nucleus(PPN)to complement the preceding articles on stereotactic and functional neurosurgery for movement disorders in the present issue of No Shinkei Geka. Two regions within the subthalamus, the PSA and fields H1/H2 of Forel, are the revisited stereotactic targets to treat movement disorders. Currently, the PSA is often utilized to treat essential tremor and various types of tremor. Fields H1/H2 of Forel are investigated as a target for magnetic resonance-guided focused ultrasound to treat motor symptoms and motor complications in patients with Parkinson's disease. For the past twenty years, the PPN has been investigated to treat refractory gait freezing and fall in patients with Parkinson's disease. These revisited and novel targets may be utilized as substitutes and complements for the present standard stereotactic targets.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Parkinson Disease , Essential Tremor/therapy , Humans , Magnetic Resonance Imaging , Parkinson Disease/therapy , Tremor
16.
Neurosci Lett ; 757: 135972, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34033888

ABSTRACT

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by the accumulation of pathogenic phosphorylated α-synuclein in oligodendrocytes. In brains affected by MSA, severe astrogliosis is also observed, but its precise role in MSA pathogenesis remains largely unknown. Recently, the stimulator of interferon genes (STING) pathway and type I interferons, its downstream molecules, have been reported to be involved in the neurodegenerative process and to be activated in astrocytes. This study aimed to investigate the role of the STING pathway in the pathogenesis of MSA using postmortem brains. Samples used for immunohistochemical analysis included 6 cases of MSA parkinsonism type (MSA-P), 6 cases of MSA cerebellar type (MSA-C), and 7 age-matched controls. In MSA-P cases, astrocytes immunopositive for STING and TANK-binding kinase 1 (TBK1), its downstream molecule, were abundantly observed in the putamen and the substantia nigra. Moreover, these molecules colocalized with glial fibrillary acidic protein (GFAP) in reactive astrocytes, and the density of STING-positive astrocytes correlated with that of GFAP-positive reactive astrocytes in the brains of patients with MSA-P. These results suggest that the upregulated expression of STING pathway-related proteins in astrocytes and the subsequent inflammation may contribute to the pathogenesis in MSA-P and could provide novel therapeutic targets for the treatment of MSA.


Subject(s)
Astrocytes/metabolism , Membrane Proteins/metabolism , Multiple System Atrophy/immunology , Putamen/pathology , Substantia Nigra/pathology , Aged , Aged, 80 and over , Case-Control Studies , Glial Fibrillary Acidic Protein/analysis , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Membrane Proteins/analysis , Middle Aged , Multiple System Atrophy/pathology , Putamen/cytology , Putamen/immunology , Signal Transduction/immunology , Substantia Nigra/cytology , Substantia Nigra/immunology , Up-Regulation/immunology
17.
Jpn J Radiol ; 39(7): 669-680, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33641056

ABSTRACT

PURPOSE: To evaluate the clinical feasibility of a newly developed mobile PET system with MR-compatibility (flexible PET; fxPET), compared with conventional PET (cPET)/CT for brain imaging. METHODS: Twenty-one patients underwent cPET/CT with subsequent fxPET/MRI using 18F-FDG. As qualitative evaluation, we visually rated image quality of MR and PET images using a four-point scoring system. We evaluated overall image quality for MR, while we evaluated overall image quality, sharpness and lesion contrast. As quantitative evaluation, we compared registration accuracy between two modalities [(fxPET and MRI) and (cPET and CT)] measuring spatial coordinates. We also examined the accuracy of regional 18F-FDG uptake. RESULTS: All acquired images were of diagnostic quality and the number of detected lesions did not differ significantly between fxPET/MR and cPET/CT. Mean misregistration was significantly larger with fxPET/MRI than with cPET/CT. SUVmax and SUVmean for fxPET and cPET showed high correlations in the lesions (R = 0.84, 0.79; P < 0.001, P = 0.002, respectively). In normal structures, we also showed high correlations of SUVmax (R = 0.85, 0.87; P < 0.001, P < 0.001, respectively) and SUVmean (R = 0.83, 0.87; P < 0.001, P < 0.001, respectively) in bilateral caudate nuclei and a moderate correlation of SUVmax (R = 0.65) and SUVmean (R = 0.63) in vermis. CONCLUSIONS: The fxPET/MRI system showed image quality within the diagnostic range, registration accuracy below 3 mm and regional 18F-FDG uptake highly correlated with that of cPET/CT.


Subject(s)
Brain Diseases/diagnosis , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/instrumentation , Tomography, X-Ray Computed/methods , Whole Body Imaging/methods , Adult , Aged , Feasibility Studies , Female , Humans , Male , Middle Aged , Neuroimaging/methods , Young Adult
18.
NMC Case Rep J ; 8(1): 247-252, 2021.
Article in English | MEDLINE | ID: mdl-35079471

ABSTRACT

Tremor associated with encephalitis is usually transient and rarely becomes chronic and refractory. Treatment for such tremor using deep brain stimulation (DBS) has not yet been reported. We report an uncommon case of chronic tremor after encephalitis of unknown etiology and its outcome treated with thalamic DBS. A 47-year-old man presented with a 6-month history of medically refractory tremor after non-infectious and probable autoimmune encephalitis. The patient showed an atypical mixture of resting, postural, kinetic, and intention tremor. The tremor significantly disabled the patient's activities of daily life (ADL). The patient underwent bilateral thalamic DBS surgery. DBS leads were placed to cross the border between the ventralis oralis posterior (Vop) nucleus and ventralis intermedius (Vim) nucleus of the thalamus. Stimulation of both the Vop and Vim using the bipolar contacts controlled the mixed occurrence of tremor. The ADL and performance scores on The Essential Tremor Rating Assessment Scale (TETRAS) improved from 47 to 0 and from 44 to 9, respectively. The therapeutic effects have lasted for 24 months. Administration of combined Vop and Vim DBS may control uncommon tremor of atypical etiology and phenomenology.

19.
Invest Radiol ; 56(2): 69-77, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32649332

ABSTRACT

OBJECTIVES: The aim of this study was to assess the accuracy, reliability, and cerebral microbleed (CMB) detection performance of 2-minute quantitative susceptibility mapping (QSM) from 3-dimensional echo-planar imaging (3D-EPI). MATERIALS AND METHODS: Gadolinium phantom study was conducted using 3D-EPI, single-echo time (TE), and multi-TE gradient-recalled echo (GRE) sequences on two 3-T magnetic resonance (MR) scanners to assess the accuracy between measured and theoretical susceptibility values. The institutional review board approved this prospective study, and 40 healthy volunteers were enrolled with written consent between April 2018 and October 2019. Each underwent 3D-EPI, single-TE, and multi-TE GRE sequences consecutively on one 3-T MR scanner, and QSMs were calculated to assess the reliability of 3D-EPI QSM. Intraclass correlation coefficient (ICC), linear regression, and Bland-Altman plots were calculated. Patients with CMB who underwent both 3D-EPI and GRE QSM scans were retrospectively enrolled. Two radiologists evaluated images independently, and Cohen κ coefficients were calculated to compare CMB detection performance. RESULTS: Phantom study showed excellent validity of 3D-EPI QSM on both MR scanners: Skyra, R2 = 0.996, P < 0.001, ICC = 0.997, mean difference, -2 ppb (95% confidence interval [CI], -45 to 40 ppb); Prisma, R2 = 0.992, P < 0.001, ICC = 0.988, mean difference, 15 ppb (95% CI, -67 to 97 ppb). A human study of 40 healthy volunteers (59 ± 13 years, 25 women) showed excellent reliability with 3D-EPI QSM for both single-TE and multi-TE GRE (R2 = 0.981, P < 0.001, ICC = 0.988; R2 = 0.983, P < 0.001, ICC = 0.990, respectively), supported by a Bland-Altman mean difference of 4 ppb (95% CI, -15 to 23 ppb) for single-TE GRE and 3 ppb (95% CI, -15 to 20 ppb) for multi-TE GRE. The CMB detection performance evaluation from 38 patients (51 ± 20 years, 20 women) showed almost perfect agreement between 3D-EPI and GRE QSM for both raters (κ = 0.923 and 0.942, P < 0.001). CONCLUSIONS: Faster QSM from 3D-EPI demonstrated excellent accuracy, reliability, and CMB detection performance.


Subject(s)
Echo-Planar Imaging , Magnetic Resonance Imaging , Cerebral Hemorrhage/diagnostic imaging , Female , Humans , Prospective Studies , Reproducibility of Results , Retrospective Studies
20.
Mov Disord ; 36(4): 874-882, 2021 04.
Article in English | MEDLINE | ID: mdl-33314293

ABSTRACT

BACKGROUND: Neuromelanin-sensitive magnetic resonance imaging techniques have been developed but currently require relatively long scan times. The aim of this study was to assess the ability of black-blood delay alternating with nutation for tailored excitation-prepared T1-weighted variable flip angle turbo spin echo (DANTE T1-SPACE), which provides relatively high resolution with a short scan time, to visualize neuromelanin in the substantia nigra pars compacta (SNpc). METHODS: Participants comprised 49 healthy controls and 25 patients with Parkinson's disease (PD). Contrast ratios of SNpc and hyperintense SNpc areas, which show pixels brighter than thresholds, were assessed between DANTE T1-SPACE and T1-SPACE in healthy controls. To evaluate the diagnostic ability of DANTE T1-SPACE, the contrast ratios and hyperintense areas were compared between healthy and PD groups, and receiver operating characteristic analyses were performed. We also compared areas under the curve (AUCs) between DANTE T1-SPACE and the previously reported gradient echo neuromelanin (GRE-NM) imaging. Each analysis was performed using original images in native space and images transformed into Montreal Neurological Institute space. Values of P < 0.05 were considered significant. RESULTS: DANTE T1-SPACE showed significantly higher contrast ratios and larger hyperintense areas than T1-SPACE. On DANTE T1-SPACE, healthy controls showed significantly higher contrast ratios and larger hyperintense areas than patients with PD. Hyperintense areas in native space analysis achieved the best AUC (0.94). DANTE T1-SPACE showed AUCs as high as those of GRE-NM. CONCLUSIONS: DANTE T1-SPACE successfully visualized neuromelanin of the SNpc and showed potential for evaluating PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Melanins , Parkinson Disease , Humans , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Pars Compacta , Substantia Nigra
SELECTION OF CITATIONS
SEARCH DETAIL
...