Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Sci J ; 87(6): 827-34, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26387490

ABSTRACT

In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage.


Subject(s)
Dairying , Manure/analysis , Methane/biosynthesis , Refuse Disposal/methods , Temperature , Animals , Cattle , Japan , Models, Statistical , Time Factors , Volatilization
2.
Rapid Commun Mass Spectrom ; 26(20): 2422-30, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-22976209

ABSTRACT

RATIONALE: The application of organic materials to agricultural lands is considered good practice to improve soil organic matter content and recycle nutrients for crop growth. The anaerobic treatment of food waste may have environmental benefits, particularly with regard to greenhouse gases (GHGs) mitigation and enhancement of carbon sequestration. METHODS: This work presents the results from a field experiment to evaluate CO(2) , CH(4) and N(2) O emissions from grassland amended with digestate produced by anaerobic fermentation of food waste. Experimental plots, located close to Rothamsted Research-North Wyke, were established using a randomized block design with three replicates and two treatments, added digestate (DG) and the unamended control (CNT). The digestate was applied on three occasions at an equivalent rate of 80 kg N ha(-1) . RESULTS: The application of digestate led to an increase in CO(2) emissions, especially after the 2(nd) application (74.1 kg CO(2) -C ha(-1) day(-1) ) compared with the CNT soil (36.4 kg CO(2) -C ha(-1) day(-1) ), whereas DG treatment did not affect the overall CH(4) and N(2) O emissions. The total grass yield harvested on a dry matter basis was greater in the DG treated plots (0.565 kg m(-2) ) than in the CNT plots (0.282 kg m(-2) ), as was the (15) N content in the harvest collected from the DG plots. CONCLUSIONS: The results suggest that the digestate can be applied to agricultural land as a fertilizer to grow crops. Our study was conducted in an exceptionally dry growing season, so conclusions about the effect of digestate on GHG emissions should take this into account, and further field trials conducted under more typical growing seasons are needed.


Subject(s)
Carbon Dioxide/analysis , Garbage , Gases/analysis , Greenhouse Effect , Methane/analysis , Nitrous Oxide/analysis , Soil/analysis , Anaerobiosis , Environmental Monitoring
3.
J Environ Qual ; 32(6): 1965-77, 2003.
Article in English | MEDLINE | ID: mdl-14674518

ABSTRACT

To evaluate spatial variability of nitrous oxide (N2O) emissions and to elucidate their determining factors on a field-scale basis, N2O fluxes and various soil properties were evaluated in a 100- x 100-m onion (Allium cepa L.) field. Nitrous oxide fluxes were determined by a closed chamber method from the one-hundred 10- x 10-m plots. Physical (e.g., bulk density and water content), chemical (e.g., total N and pH), and biological (e.g., microbial biomass C and N) properties were determined from surface soil samples (0-0.1 m) of each plot. Geostatistical analysis was performed to examine spatial variability of both N2O fluxes and soil properties. Multivariate analysis was also conducted to elucidate relationships between soil properties and observed fluxes. Nitrous oxide fluxes were highly variable (average 331 microg N m(-2) h(-1), CV 217%) and were log-normally distributed. Log-transformed N2O fluxes had moderate spatial dependence with a range of >75 m. High N2O fluxes were observed at sites with relatively low elevation. Multivariate analysis indicated that an organic matter factor and a pH factor of the principal component analysis were the main soil-related determining factors of log-transformed N2O fluxes. By combining multivariate analysis with geostatistics, a map of predicted N2O fluxes closely matched the spatial pattern of measured fluxes. The regression equation based on the soil properties explained 56% of the spatially structured variation of the log-transformed N2O fluxes. Site-specific management to regulate organic matter content and water status of a soil could be a promising means of reducing N2O emissions from agricultural fields.


Subject(s)
Air Pollutants/analysis , Gases/analysis , Nitrous Oxide/analysis , Soil/analysis , Air Pollutants/chemistry , Environmental Monitoring , Gases/chemistry , Greenhouse Effect , Humans , Nitrous Oxide/chemistry , Onions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...