Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Technol ; 24(6): 569-582, 2019 12.
Article in English | MEDLINE | ID: mdl-31288593

ABSTRACT

During process development, the experimental search space is defined by the number of experiments that can be performed in specific time frames but also by its sophistication (e.g., inputs, sensors, sampling frequency, analytics). High-throughput liquid-handling stations can perform a large number of automated experiments in parallel. Nevertheless, the experimental data sets that are obtained are not always relevant for development of industrial bioprocesses, leading to a high rate of failure during scale-up. We present an automated mini bioreactor platform that enables parallel cultivations in the milliliter scale with online monitoring and control, well-controlled conditions, and advanced feeding strategies similar to industrial processes. The combination of two liquid handlers allows both automated mini bioreactor operation and at-line analysis in parallel. A central database enables end-to-end data exchange and fully integrated device and process control. A model-based operation algorithm allows for the accurate performance of complex cultivations for scale-down studies and strain characterization via optimal experimental redesign, significantly increasing the reliability and transferability of data throughout process development. The platform meets the tradeoff between experimental throughput and process control and monitoring comparable to laboratory-scale bioreactors.


Subject(s)
Automation, Laboratory/standards , Bioreactors , Escherichia coli/growth & development , Robotics/instrumentation , Algorithms , Biotechnology , Escherichia coli/genetics , High-Throughput Screening Assays , Humans , Isopropyl Thiogalactoside , Miniaturization , Proinsulin/genetics , Proinsulin/metabolism , Software
2.
Article in English | MEDLINE | ID: mdl-31179278

ABSTRACT

Especially in biomanufacturing, methods to design optimal experiments are a valuable technique to fully exploit the potential of the emerging technical possibilities that are driving experimental miniaturization and parallelization. The general objective is to reduce the experimental effort while maximizing the information content of an experiment, speeding up knowledge gain in R&D. The approach of model-based design of experiments (known as MBDoE) utilizes the information of an underlying mathematical model describing the system of interest. A common method to predict the accuracy of the parameter estimates uses the Fisher information matrix to approximate the 90% confidence intervals of the estimates. However, for highly non-linear models, this method might lead to wrong conclusions. In such cases, Monte Carlo sampling gives a more accurate insight into the parameter's estimate probability distribution and should be exploited to assess the reliability of the approximations made through the Fisher information matrix. We first introduce the model-based optimal experimental design for parameter estimation including parameter identification and validation by means of a simple non-linear Michaelis-Menten kinetic and show why Monte Carlo simulations give a more accurate depiction of the parameter uncertainty. Secondly, we propose a very robust and simple method to find optimal experimental designs using Monte Carlo simulations. Although computational expensive, the method is easy to implement and parallelize. This article focuses on practical examples of bioprocess engineering but is generally applicable in other fields.

3.
Bioengineering (Basel) ; 5(4)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469407

ABSTRACT

Mini-bioreactor systems enabling automatized operation of numerous parallel cultivations are a promising alternative to accelerate and optimize bioprocess development allowing for sophisticated cultivation experiments in high throughput. These include fed-batch and continuous cultivations with multiple options of process control and sample analysis which deliver valuable screening tools for industrial production. However, the model-based methods needed to operate these robotic facilities efficiently considering the complexity of biological processes are missing. We present an automated experiment facility that integrates online data handling, visualization and treatment using multivariate analysis approaches to design and operate dynamical experimental campaigns in up to 48 mini-bioreactors (8⁻12 mL) in parallel. In this study, the characterization of Saccharomyces cerevisiae AH22 secreting recombinant endopolygalacturonase is performed, running and comparing 16 experimental conditions in triplicate. Data-driven multivariate methods were developed to allow for fast, automated decision making as well as online predictive data analysis regarding endopolygalacturonase production. Using dynamic process information, a cultivation with abnormal behavior could be detected by principal component analysis as well as two clusters of similarly behaving cultivations, later classified according to the feeding rate. By decision tree analysis, cultivation conditions leading to an optimal recombinant product formation could be identified automatically. The developed method is easily adaptable to different strains and cultivation strategies, and suitable for automatized process development reducing the experimental times and costs.

SELECTION OF CITATIONS
SEARCH DETAIL