Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Oper Neurosurg (Hagerstown) ; 23(1): 22-30, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35726926

ABSTRACT

BACKGROUND: Virtual reality surgical simulators provide detailed psychomotor performance data, allowing qualitative and quantitative assessment of hand function. The nondominant hand plays an essential role in neurosurgery in exposing the operative area, assisting the dominant hand to optimize task execution, and hemostasis. Outlining expert-level nondominant hand skills may be critical to understand surgical expertise and aid learner training. OBJECTIVE: To (1) provide validity for the simulated bimanual subpial tumor resection task and (2) to use this simulation in qualitative and quantitative evaluation of nondominant hand skills for bipolar forceps utilization. METHODS: In this case series study, 45 right-handed participants performed a simulated subpial tumor resection using simulated bipolar forceps in the nondominant hand for assisting the surgery and hemostasis. A 10-item questionnaire was used to assess task validity. The nondominant hand skills across 4 expertise levels (neurosurgeons, senior trainees, junior trainees, and medical students) were analyzed by 2 visual models and performance metrics. RESULTS: Neurosurgeon median (range) overall satisfaction with the simulated scenario was 4.0/5.0 (2.0-5.0). The visual models demonstrated a decrease in high force application areas on pial surface with increased expertise level. Bipolar-pia mater interactions were more focused around the tumoral region for neurosurgeons and senior trainees. These groups spent more time using the bipolar while interacting with pia. All groups spent significantly higher time in the left upper pial quadrant than other quadrants. CONCLUSION: This work introduces new approaches for the evaluation of nondominant hand skills which may help surgical trainees by providing both qualitative and quantitative feedback.


Subject(s)
Brain Neoplasms , Neurosurgery , Simulation Training , Virtual Reality , Brain Neoplasms/surgery , Humans , Neurosurgeons , Neurosurgery/education
3.
World Neurosurg ; 127: e230-e235, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30880209

ABSTRACT

BACKGROUND: Adequate assessment and feedback remains a cornerstone of psychomotor skills acquisition, particularly within neurosurgery where the consequence of adverse operative events is significant. However, a critical appraisal of the reliability of visual rating scales in neurosurgery is lacking. Therefore, we sought to design a study to compare visual rating scales with simulated metrics in a neurosurgical virtual reality task. METHODS: Neurosurgical faculty rated anonymized participant video recordings of the removal of simulated brain tumors using a visual rating scale made up of seven composite elements. Scale reliability was evaluated using generalizability theory, and scale subcomponents were compared with simulated metrics using Pearson correlation analysis. RESULTS: Four staff neurosurgeons evaluated 16 medical student neurosurgery applicants. Overall scale reliability and internal consistency were 0.73 and 0.90, respectively. Reliability of 0.71 was achieved with two raters. Individual participants, raters, and scale items accounted for 27%, 11%, and 0.6% of the data variability. The hemostasis scale component related to the greatest number of simulated metrics, whereas respect for no-go zones and tissue was correlated with none. Metrics relating to instrument force and patient safety (brain volume removed and blood loss) were captured by the fewest number of rating scale components. CONCLUSIONS: To our knowledge, this is the first study comparing participant's ratings with simulated performance. Given rating scales capture less well instrument force, quantity of brain volume removed, and blood loss, we suggest adopting a hybrid educational approach using visual rating scales in an operative environment, supplemented by simulated sessions to uncover potentially problematic surgical technique.


Subject(s)
Brain Neoplasms/surgery , Educational Measurement/methods , Models, Theoretical , Neurosurgery/education , Neurosurgical Procedures , Simulation Training/methods , Virtual Reality , Blood Loss, Surgical , Humans , Internship and Residency , Neurosurgeons , Observer Variation , Patient Safety , Psychomotor Performance , Students, Medical , Video Recording
4.
J Surg Educ ; 76(1): 262-273, 2019.
Article in English | MEDLINE | ID: mdl-30072262

ABSTRACT

OBJECTIVE: The study objectives were to assess if surgical performance and subjective assessment of a virtual reality simulator platform was influenced by changing force feedback devices. DESIGN: Participants used the NeuroVR (formerly NeuroTouch) simulator to perform 5 practice scenarios and a realistic scenario involving subpial resection of a virtual reality brain tumor with simulated bleeding. The influence of force feedback was assessed by utilizing the Omni and Entact haptic systems. Tier 1, tier 2, and tier 2 advanced metrics were used to compare results. Operator subjective assessment of the haptic systems tested utilized seven Likert criteria (score 1 to 5). SETTING: The study is carried out at the McGill Neurosurgical Simulation Research and Training Centre, Montreal Neurological Institute and Hospital, Montreal, Canada. PARTICIPANTS: Six expert operators in the utilization of the NeuroVR simulator platform. RESULTS: No significant differences in surgical performance were found between the two haptic devices. Participants significantly preferred the Entact system on all 7 Likert criteria of subjective assessment. CONCLUSIONS: Our results show no statistical differences in virtual reality surgical performance utilizing the two bimanual haptic devices tested. Subjective assessments demonstrated that participants preferred the Entact system. Our results suggest that to maximize realism of the training experience educators employing virtual reality simulators may find it useful to assess expert opinion before choosing a force feedback device.


Subject(s)
Clinical Competence , Education, Medical, Graduate/methods , Feedback, Physiological , Neurosurgical Procedures/education , Simulation Training , Virtual Reality , Humans , Neurosurgical Procedures/instrumentation , Self Report
5.
J Neurosurg ; 131(1): 192-200, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30074456

ABSTRACT

OBJECTIVE: Previous work from the authors has shown that hand ergonomics plays an important role in surgical psychomotor performance during virtual reality brain tumor resections. In the current study they propose a hypothetical model that integrates the human and task factors at play during simulated brain tumor resections to better understand the hand ergonomics needed for optimal safety and efficiency. They hypothesize that 1) experts (neurosurgeons), compared to novices (residents and medical students), spend a greater proportion of their time in direct contact with critical tumor areas; 2) hand ergonomic conditions (most favorable to unfavorable) prompt participants to adapt in order to optimize tumor resection; and 3) hand ergonomic adaptation is acquired with increasing expertise. METHODS: In an earlier study, experts (neurosurgeons) and novices (residents and medical students) were instructed to resect simulated brain tumors on the NeuroVR (formerly NeuroTouch) virtual reality neurosurgical simulation platform. For the present study, the simulated tumors were divided into four quadrants (Q1 to Q4) to assess hand ergonomics at various levels of difficulty. The spatial distribution of time expended, force applied, and tumor volume removed was analyzed for each participant group (total of 22 participants). RESULTS: Neurosurgeons spent a significantly greater percentage of their time in direct contact with critical tumor areas. Under the favorable hand ergonomic conditions of Q1 and Q3, neurosurgeons and senior residents spent significantly more time in Q1 than in Q3. Although forces applied in these quadrants were similar, neurosurgeons, having spent more time in Q1, removed significantly more tumor in Q1 than in Q3. In a comparison of the most favorable (Q2) to unfavorable (Q4) hand ergonomic conditions, neurosurgeons adapted the forces applied in each quadrant to resect similar tumor volumes. Differences between Q2 and Q4 were emphasized in measures of force applied per second, tumor volume removed per second, and tumor volume removed per unit of force applied. In contrast, the hand ergonomics of medical students did not vary across quadrants, indicating the existence of an "adaptive capacity" in neurosurgeons. CONCLUSIONS: The study results confirm the experts' (neurosurgeons) greater capacity to adapt their hand ergonomics during simulated neurosurgical tasks. The proposed hypothetical model integrates the study findings with various human and task factors that highlight the importance of learning in the acquisition of hand ergonomic adaptation.

6.
Oper Neurosurg (Hagerstown) ; 14(6): 686-696, 2018 06 01.
Article in English | MEDLINE | ID: mdl-28962033

ABSTRACT

BACKGROUND: The force pyramid is a novel visual representation allowing spatial delineation of instrument force application during surgical procedures. In this study, the force pyramid concept is employed to create and quantify dominant hand, nondominant hand, and bimanual force pyramids during resection of virtual reality brain tumors. OBJECTIVE: To address 4 questions: Do ergonomics and handedness influence force pyramid structure? What are the differences between dominant and nondominant force pyramids? What is the spatial distribution of forces applied in specific tumor quadrants? What differentiates "expert" and "novice" groups regarding their force pyramids? METHODS: Using a simulated aspirator in the dominant hand and a simulated sucker in the nondominant hand, 6 neurosurgeons and 14 residents resected 8 different tumors using the CAE NeuroVR virtual reality neurosurgical simulation platform (CAE Healthcare, Montréal, Québec and the National Research Council Canada, Boucherville, Québec). Position and force data were used to create force pyramids and quantify tumor quadrant force distribution. RESULTS: Force distribution quantification demonstrates the critical role that handedness and ergonomics play on psychomotor performance during simulated brain tumor resections. Neurosurgeons concentrate their dominant hand forces in a defined crescent in the lower right tumor quadrant. Nondominant force pyramids showed a central peak force application in all groups. Bimanual force pyramids outlined the combined impact of each hand. Distinct force pyramid patterns were seen when tumor stiffness, border complexity, and color were altered. CONCLUSION: Force pyramids allow delineation of specific tumor regions requiring greater psychomotor ability to resect. This information can focus and improve resident technical skills training.


Subject(s)
Brain Neoplasms/surgery , Functional Laterality , Neurosurgery/education , Neurosurgical Procedures , Simulation Training/methods , Virtual Reality , Adult , Education, Medical, Graduate , Ergonomics , Female , Hand , Humans , Internship and Residency , Male , Middle Aged
7.
J Surg Educ ; 75(1): 104-115, 2018.
Article in English | MEDLINE | ID: mdl-28684100

ABSTRACT

OBJECTIVE: The Fitts and Posner model of motor learning hypothesized that with deliberate practice, learners progress through stages to an autonomous phase of motor ability. To test this model, we assessed the automaticity of neurosurgeons, senior residents, and junior residents when operating on 2 identical tumors using the NeuroVR virtual reality simulation platform. DESIGN: Participants resected 9 identical simulated tumors on 2 occasions (total = 18 resections). These resections were separated by the removal of a variable number of tumors with different visual and haptic complexities to mirror neurosurgical practice. Consistency of force application was used as a metric to assess automaticity and was defined as applying forces 1 standard deviation above or below a specific mean force application. Amount and specific location of force application during second identical tumor resection was compared to that used for the initial tumor. SETTING: This study was conducted at the McGill Neurosurgical Simulation Research and Training Center, Montreal Neurologic Institute and Hospital, Montreal, Canada. PARTICIPANTS: Nine neurosurgeons, 10 senior residents, and 8 junior residents. RESULTS: Neurosurgeons display statistically significant increased consistency of force application when compared to resident groups when results from all tumor resections were assessed. Assessing individual tumor types demonstrates significant differences between the neurosurgeon and resident groups when resecting hard stiffness similar-to-background (white) tumors and medium-stiffness tumors. No statistical difference in consistency of force application was found when junior and senior residents were compared. CONCLUSION: "Experts" display significantly more automaticity when operating on identical simulated tumors separated by a series of different tumors using the NeuroVR platform. These results support the Fitts and Posner model of motor learning and are consistent with the concept that automaticity improves after completing residency training. The potential educational application of our findings is outlined related to neurosurgical resident training.


Subject(s)
Brain Neoplasms/surgery , Clinical Competence , Simulation Training/methods , User-Computer Interface , Adult , Automation , Benchmarking , Canada , Humans , Internship and Residency/methods , Learning Curve , Middle Aged , Models, Anatomic , Young Adult
8.
J Neurosurg ; 127(1): 171-181, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27689458

ABSTRACT

OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.


Subject(s)
Brain Neoplasms/surgery , Neurosurgery/education , Neurosurgical Procedures/education , Neurosurgical Procedures/methods , Simulation Training , Virtual Reality , Ergonomics , Functional Laterality , Humans , Physical Phenomena , Spatial Analysis
9.
J Neuropathol Exp Neurol ; 75(2): 156-66, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26802178

ABSTRACT

Anatomic distribution and age are variables linked to functions of astrocytes under physiologic and pathologic conditions. We measured the relative expression of a panel of microRNAs (miRNAs) in astrocytes captured by laser micro-dissection from normal human adult white and grey matter, human fetal white matter and germinal matrix samples. Although expression of most miRNAs was comparable between adult and fetal samples, regional differences were observed. In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid. Differences between adult white and grey matter miRNA expression included higher expression of pro-inflammatory miRNAs in the former, potentially contributing to differences in inflammation between grey and white matter plaques in multiple sclerosis. Lower expression of miRNAs in fetal versus adult white matter astrocytes likely reflects the immaturity of these migrating cells. Highly expressed miRNAs in the fetal germinal matrix are probably relevant in development and also recapitulate some responses to injury. Future studies can address regional alterations of miRNA expression in pathological conditions.


Subject(s)
Aging/metabolism , Astrocytes/metabolism , MicroRNAs/genetics , Adult , Aged , Female , Fetus/metabolism , Gene Expression Profiling , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Gray Matter/growth & development , Gray Matter/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Middle Aged , Pregnancy , White Matter/growth & development , White Matter/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...