Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(50): 47758-47772, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144072

ABSTRACT

In order to find the most advantageous bioactive compounds from mulberry latex for drug development in the near future, this study was conducted to characterize and evaluate antioxidant and antimicrobial properties from four different mulberry lattices (BR-2, S-1, AR-14, and S-146). The characterization of the lattices was performed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, gas chromatography coupled to mass spectroscopy, and Fourier transform infrared spectroscopy. Further, screenings of the antioxidant and antimicrobial potential of selected lattices were performed in vitro using 2,2-diphenyl-1-picrylhydrazyl assay and agar well diffusion methods, respectively. Interestingly, the outcome of the current study revealed that tested mulberry lattices contain a considerable amount of bioactive phytoconstituents, particularly antimicrobial and antioxidant compounds, as revealed by chromatographic analysis. BR-2 latex was found to have significant antioxidant activity (75%) followed by S-146 (64.6%) and AR-14 (52.9%). The maximum antimicrobial activity was found in BR-2 latex compared to other tested latex varieties. The results of this investigation showed that mulberry latex from the BR-2 type may successfully control both bacterial and fungal infections, with the added benefit of having enhanced antioxidant capabilities.

2.
Biomech Model Mechanobiol ; 22(5): 1685-1695, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37249760

ABSTRACT

Optimal bladder compliance is essential to urinary bladder storage and voiding functions. Calculated as the change in filling volume per change in pressure, bladder compliance is used clinically to characterize changes in bladder wall biomechanical properties that associate with lower urinary tract dysfunction. But because this method calculates compliance without regard to wall structure or wall volume, it gives little insight into the mechanical properties of the bladder wall during filling. Thus, we developed Pentaplanar Reflected Image Macroscopy (PRIM): a novel ex vivo imaging method to accurately calculate bladder wall stress and stretch in real time during bladder filling. The PRIM system simultaneously records intravesical pressure, infused volume, and an image of the bladder in five distinct visual planes. Wall thickness and volume were then measured and used to calculate stress and stretch during filling. As predicted, wall stress was nonlinear; only when intravesical pressure exceeded ~ 15 mmHg did bladder wall stress rapidly increase with respect to stretch. This method of calculating compliance as stress vs stretch also showed that the mechanical properties of the bladder wall remain similar in bladders of varying capacity. This study demonstrates how wall tension, stress and stretch can be measured, quantified, and used to accurately define bladder wall biomechanics in terms of actual material properties and not pressure/volume changes. This method is especially useful for determining how changes in bladder biomechanics are altered in pathologies where profound bladder wall remodeling occurs, such as diabetes and spinal cord injury.


Subject(s)
Pelvis , Urinary Bladder , Biomechanical Phenomena , Compliance
3.
Materials (Basel) ; 16(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36614759

ABSTRACT

The friction stir process (FSP) is becoming a highly utilized method to manufacture composites since it refines the microstructure and improves the physical characteristics like hardness, strength, and wear resistance of their surfaces. In this study, the hardness and wear behaviours of Al6061-based surface composites prepared by the FSP were investigated and compared for the influences of various parameters-FSP tool geometry, reinforcement composition, number of FSP passes, pin load, etc. The Taguchi design with an L27 orthogonal array was developed to analyze the influence of five input parameters on the output parameter, i.e., wear rate during wear tests. The hardness of the composite samples for different reinforcement compositions was investigated, and the results were statistically compared with the obtained wear rates. It was concluded from the results that various parameters influenced the surface wear and hardness of the composites. Tool geometries cylindrical pin and square pin had the maximum and minimum wear rates, respectively. Additionally, the optimal composition of the reinforcements copper and graphene as 1:3 possessed the maximum wear rate and minimum hardness. However, the reinforcement composition 3:3 (Cu:Gr) by weight had the minimum wear rate and maximum hardness. The higher the FSP pass numbers, the lesser the wear rate and the higher the hardness, and vice-versa. This work helps identify the influence of numerous factors on the wear and hardness aspects of surface composites prepared by the FSP. In the future, this study can be modified by combining it with thermal analysis, sensor data analysis of the composites, and optimization of the parameters for desirable microstructure and physical properties.

4.
Sci Rep ; 13(1): 625, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635439

ABSTRACT

A balance between stiffness and compliance is essential to normal bladder function, and changes in the mechanical properties of the bladder wall occur in many bladder pathologies. These changes are often associated with the release of basic secretagogues that in turn drive the release of inflammatory mediators from mast cells. Mast cell degranulation by basic secretagogues is thought to occur by activating an orphan receptor, Mas-related G protein-coupled receptor B2 (Mrgprb2). We explored the effects of the putative mast cell degranulator and Mrgprb2 agonist Compound 48/80 on urinary bladder wall mechanical compliance, smooth muscle contractility, and urodynamics, and if these effects were mast cell dependent. In wild-type mice, Mrgprb2 receptor mRNA was expressed in both the urothelium and smooth muscle layers. Intravesical instillation of Compound 48/80 decreased intermicturition interval and void volume, indicative of bladder overactivity. Compound 48/80 also increased bladder compliance while simultaneously increasing the amplitude and leading slope of transient pressure events during ex vivo filling and these effects were inhibited by the Mrgprb2 antagonist QWF. Surprisingly, all effects of Compound 48/80 persisted in mast cell-deficient mice, suggesting these effects were independent of mast cells. These findings suggest that Compound 48/80 degrades extracellular matrix and increases urinary bladder smooth muscle excitability through activation of Mrgprb2 receptors located outside of mast cells. Thus, the pharmacology and physiology of Mrgprb2 in the urinary bladder is of potential interest and importance in terms of treating lower urinary tract dysfunction.


Subject(s)
Mast Cells , Urinary Bladder , Mice , Animals , Urinary Bladder/metabolism , Mast Cells/metabolism , p-Methoxy-N-methylphenethylamine/pharmacology , Secretagogues/pharmacology , Receptors, G-Protein-Coupled/metabolism
5.
ACS Synth Biol ; 11(2): 713-731, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35025506

ABSTRACT

Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.


Subject(s)
Escherichia coli Infections , Escherichia coli , Bacteria , Biofilms , Computer Simulation , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Humans
7.
3 Biotech ; 9(7): 256, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31192081

ABSTRACT

The draft genome sequence of a cold-adapted phosphorus-solubilizing strain Pseudomonas koreensis P2 isolated from the Sela Lake contains 6,436,246 bp with G + C content of 59.8%. The genome sequence includes 5743 protein coding genes, 68 non-protein coding genes, 1007 putative proteins, 5 rRNA genes, 64 tRNAs and two prophage regions in 40 contigs. Besides these, genes involved in phosphate solubilization, siderophore production, iron uptake, heat shock and cold shock tolerance, multidrug resistance and glycine-betaine production were also identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...