Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(5): e4978, 2024 May.
Article in English | MEDLINE | ID: mdl-38591637

ABSTRACT

The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Ebolavirus/genetics , Ebolavirus/metabolism , Hemorrhagic Fever, Ebola/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Amino Acids/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
2.
J Phys Chem B ; 127(29): 6449-6461, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37458567

ABSTRACT

The Ebola virus (EBOV) is a filamentous virus that acquires its lipid envelope from the plasma membrane of the host cell it infects. EBOV assembly and budding from the host cell plasma membrane are mediated by a peripheral protein, known as the matrix protein VP40. VP40 is a 326 amino acid protein with two domains that are loosely linked. The VP40 N-terminal domain (NTD) contains a hydrophobic α-helix, which mediates VP40 dimerization. The VP40 C-terminal domain has a cationic patch, which mediates interactions with anionic lipids and a hydrophobic region that mediates VP40 dimer-dimer interactions. The VP40 dimer is necessary for trafficking to the plasma membrane inner leaflet and interactions with anionic lipids to mediate the VP40 assembly and oligomerization. Despite significant structural information available on the VP40 dimer structure, little is known on how the VP40 dimer is stabilized and how residues outside the NTD hydrophobic portion of the α-helical dimer interface contribute to dimer stability. To better understand how VP40 dimer stability is maintained, we performed computational studies using per-residue energy decomposition and site saturation mutagenesis. These studies revealed a number of novel keystone residues for VP40 dimer stability just adjacent to the α-helical dimer interface as well as distant residues in the VP40 CTD that can stabilize the VP40 dimer form. Experimental studies with representative VP40 mutants in vitro and in cells were performed to test computational predictions that reveal residues that alter VP40 dimer stability. Taken together, these studies provide important biophysical insights into VP40 dimerization and may be useful in strategies to weaken or alter the VP40 dimer structure as a means of inhibiting the EBOV assembly.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Dimerization , Mutagenesis , Lipids/chemistry , Viral Matrix Proteins/chemistry
3.
Sci Adv ; 8(29): eabn1440, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857835

ABSTRACT

Measles virus, Nipah virus, and multiple other paramyxoviruses cause disease outbreaks in humans and animals worldwide. The paramyxovirus matrix (M) protein mediates virion assembly and budding from host cell membranes. M is thus a key target for antivirals, but few high-resolution structures of paramyxovirus M are available, and we lack the clear understanding of how viral M proteins interact with membrane lipids to mediate viral assembly and egress that is needed to guide antiviral design. Here, we reveal that M proteins associate with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane. Using x-ray crystallography, electron microscopy, and molecular dynamics, we demonstrate that PI(4,5)P2 binding induces conformational and electrostatic changes in the M protein surface that trigger membrane deformation, matrix layer polymerization, and virion assembly.

4.
Nucleic Acids Res ; 47(6): 2946-2965, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30657965

ABSTRACT

In bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood. Here, we used genetics and single-molecule fluorescence microscopy to investigate whether RecF and RecO function together, or separately, in live Escherichia coli cells. We identified conditions in which RecF and RecO functions are genetically separable. Single-molecule imaging revealed key differences in the spatiotemporal behaviours of RecF and RecO. RecF foci frequently colocalize with replisome markers. In response to DNA damage, colocalization increases and RecF dimerizes. The majority of RecF foci are dependent on RecR. Conversely, RecO foci occur infrequently, rarely colocalize with replisomes or RecF and are largely independent of RecR. In response to DNA damage, RecO foci appeared to spatially redistribute, occupying a region close to the cell membrane. These observations indicate that RecF and RecO have distinct functions in the DNA damage response. The observed localization of RecF to the replisome supports the notion that RecF helps to maintain active DNA replication in cells carrying DNA damage.


Subject(s)
DNA-Binding Proteins/genetics , Epistasis, Genetic , Escherichia coli Proteins/genetics , DNA/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Recombination, Genetic , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...