Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Bioconjug Chem ; 27(9): 1981-90, 2016 09 21.
Article in English | MEDLINE | ID: mdl-26965452

ABSTRACT

Cytotoxic chemotherapies are used to treat breast cancer, but are limited by systemic toxicity. The key to addressing this important issue is the development of a nontoxic, tissue selective, and molecular specific delivery system. In order to potentially increase the therapeutic index of clinical reagents, we designed an Aminopeptidase P (APaseP) targeting tissue-specific construct conjugated to a homing peptide for selective binding to human breast-derived cancer cells. Homing peptides are short amino acid sequences derived from phage display libraries that have the unique property of localizing to specific organs. Our molecular construct allows for tissue-specific drug delivery, by binding to APaseP in the vascular endothelium. The breast homing peptide evaluated in our studies is a cyclic nine-amino-acid peptide with the sequence CPGPEGAGC, referred to as PEGA. We show by confocal microscopy that the PEGA peptide and similar peptide conjugates distribute to human breast tissue xenograft specifically and evaluate the interaction with the membrane-bound proline-specific APaseP (KD = 723 ± 3 nM) by binding studies. To achieve intracellular breast cancer cell delivery, the incorporation of the Tat sequence, a cell-penetrating motif derived from HIV, was conjugated with the fluorescently labeled PEGA peptide sequence. Ultimately, tissue specific peptides and their conjugates can enhance drug delivery and treatment by their ability to discriminate between tissue types. Tissue specific conjugates as we have designed may be valuable tools for drug delivery and visualization, including the potential to treat breast cancer, while simultaneously minimizing systemic toxicity.


Subject(s)
Aminopeptidases/metabolism , Breast/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , Animals , Breast/pathology , Cell Transformation, Neoplastic , Fluorescent Dyes/chemistry , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Oligopeptides/chemistry , Oligopeptides/metabolism , Organ Specificity
3.
Neoplasia ; 18(2): 111-20, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26936397

ABSTRACT

Ezrin is a scaffolding protein that is involved in oncogenesis by linking cytoskeletal and membrane proteins. Ezrin interacts with epidermal growth factor receptor (EGFR) in the cell membrane, but little is known about the effects of this interaction on EGFR signaling pathway. In this study, we established the biological and functional significance of ezrin-EGFR interaction in non-small cell lung cancer (NSCLC) cells. Endogenous ezrin and EGRF interaction was confirmed by co-immunoprecipitation and immunofluorescent staining. When expression of ezrin was inhibited, EGFR activity and phosphorylation levels of downstream signaling pathway proteins ERK and STAT3 were decreased. Cell fractionation experiments revealed that nuclear EGFR was significantly diminished in ezrin-knockdown cells. Consequently, mRNA levels of EGFR target genes AURKA, COX-2, cyclin D1, and iNOS were decreased in ezrin-depleted cells. A small molecule inhibitor of ezrin, NSC305787, reduced EGF-induced phosphorylation of EGFR and downstream target proteins, EGFR nuclear translocation, and mRNA levels of nuclear EGFR target genes similar to ezrin suppression. NSC305787 showed synergism with erlotinib in wild-type EGFR-expressing NSCLC cells, whereas no synergy was observed in EGFR-null cells. Phosphorylation of ezrin on Y146 was found as an enhancer of ezrin-EGFR interaction and required for increased proliferation, colony formation, and drug resistance to erlotinib. These findings suggest that ezrin-EGFR interaction augments oncogenic functions of EGFR and that targeting ezrin may provide a potential novel approach to overcome erlotinib resistance in NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cytoskeletal Proteins/metabolism , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cytoskeletal Proteins/genetics , ErbB Receptors/genetics , Erlotinib Hydrochloride/administration & dosage , Humans , Mutation , Neoplasm Proteins/biosynthesis , Phosphorylation , Protein Binding/drug effects , Protein Kinase Inhibitors/administration & dosage , STAT3 Transcription Factor/biosynthesis , Signal Transduction/drug effects
4.
J Neurochem ; 137(2): 287-98, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826352

ABSTRACT

Human immunodeficiency virus-1 (HIV) promotes synaptic simplification and neuronal apoptosis, and causes neurological impairments termed HIV-associated neurological disorders. HIV-associated neurotoxicity may be brought about by acute and chronic mechanisms that still remain to be fully characterized. The HIV envelope glycoprotein gp120 causes neuronal degeneration similar to that observed in HIV-associated neurocognitive disorders subjects. This study was undertaken to discover novel mechanisms of gp120 neurotoxicity that could explain how the envelope protein promotes neurite pruning. Gp120 has been shown to associate with various intracellular organelles as well as microtubules in neurons. We then analyzed lysates of neurons exposed to gp120 with liquid chromatography mass spectrometry for potential protein interactors. We found that one of the proteins interacting with gp120 is tubulin ß-3 (TUBB3), a major component of neuronal microtubules. We then tested the hypothesis that gp120 binds to neuronal microtubules. Using surface plasmon resonance, we confirmed that gp120 binds with high affinity to neuronal-specific TUBB3. We have also identified the binding site of gp120 to TUBB3. We then designed a small peptide (Helix-A) that displaced gp120 from binding to TUBB3. To determine whether this peptide could prevent gp120-mediated neurotoxicity, we cross-linked Helix-A to mesoporous silica nanoparticles (Helix-A nano) to enhance the intracellular delivery of the peptide. We then tested the neuroprotective property of Helix-A nano against three strains of gp120 in rat cortical neurons. Helix-A nano prevented gp120-mediated neurite simplification as well as neuronal loss. These data propose that gp120 binding to TUBB3 could be another mechanism of gp120 neurotoxicity. We propose a novel direct mechanism of human immunodeficiency virus neurotoxicity. Our data show that the viral protein gp120 binds to neuronal specific tubulin ß-3 and blocks microtubule transport. Displacing gp120 from binding to tubulin by a small peptide prevents gp120-mediated neuronal loss. Our study reveals a novel target for developing adjunct therapies against viral infection that promotes neurocognitive disorders.


Subject(s)
Binding Sites/physiology , HIV Envelope Protein gp120/metabolism , Neurons/metabolism , Tubulin/metabolism , Animals , Binding Sites/drug effects , Cell Death/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Chromatography, Liquid , Embryo, Mammalian , HIV Envelope Protein gp120/genetics , Humans , Mass Spectrometry , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Models, Molecular , Nanoparticles/metabolism , Nanoparticles/ultrastructure , Neurons/drug effects , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Surface Plasmon Resonance
5.
Oncotarget ; 6(35): 37678-94, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26462019

ABSTRACT

Ewing sarcoma is an aggressive tumor of bone and soft tissue affecting predominantly children and young adults. Tumor-specific chromosomal translocations create EWS-FLI1 and similar aberrant ETS fusion proteins that drive sarcoma development in patients. ETS family fusion proteins and over-expressed ETS proteins are also found in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. Transgenic expression of EWS-FLI1 in mice promotes high penetrance erythroid leukemia with dense hepatic and splenic infiltrations. We identified a small molecule, YK-4-279, that directly binds to EWS-FLI1 and inhibits its oncogenic activity in Ewing sarcoma cell lines and xenograft mouse models. Herein, we tested in vivo therapeutic efficacy and potential side effects of YK-4-279 in the transgenic mouse model with EWS-FLI1 induced leukemia. A two-week course of treatment with YK-4-279 significantly reduced white blood cell count, nucleated erythroblasts in the peripheral blood, splenomegaly, and hepatomegaly of erythroleukemic mice. YK-4-279 inhibited EWS-FLI1 target gene expression in neoplastic cells. Treated animals showed significantly better overall survival compared to control mice that rapidly succumbed to leukemia. YK-4-279 treated mice did not show overt toxicity in liver, spleen, or bone marrow. In conclusion, this in vivo study highlights the efficacy of YK-4-279 to treat EWS-FLI1 expressing neoplasms and support its therapeutic potential for patients with Ewing sarcoma and other ETS-driven malignancies.


Subject(s)
Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Indoles/pharmacology , Leukemia, Erythroblastic, Acute/drug therapy , Leukemia, Erythroblastic, Acute/etiology , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/toxicity , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/toxicity , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/toxicity , Animals , Blotting, Western , Chromatin Immunoprecipitation , Flow Cytometry , Humans , Immunoenzyme Techniques , Leukemia, Erythroblastic, Acute/pathology , Mice , Mice, Transgenic , Oncogene Proteins, Fusion/administration & dosage , Proto-Oncogene Protein c-fli-1/administration & dosage , RNA, Messenger/genetics , RNA-Binding Protein EWS/administration & dosage , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...