Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Addict Biol ; 29(2): e13360, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380695

ABSTRACT

Tobacco smoking is a serious health problem in society. While smoking rates are declining, smoking remains a serious risk to national health. Currently, there are several medications available to aid in smoking cessation. However, these medications have the disadvantages of low success rates in smoking cessation and various side effects. Therefore, natural-based smoking cessation aids are being suggested as a good alternative due to their accessibility and minimal side effects. The roots and stems of Acanthopanax koreanum (AK) Nakai, a plant that is native to Jeju Island, South Korea, have traditionally been used as tonic and sedatives. Moreover, eleutheroside B and chlorogenic acid are the main components of AK stem extract. In the present study, we investigated the effect of 70% ethanol AK extract and its components on ameliorating nicotine dependence and withdrawal symptoms by using behavioural tests in mice. In addition, alterations in the dopaminergic and DRD1-EPAC-ERK-CREB pathways were observed using dopamine ELISA and western blotting using mouse brains. Our findings demonstrate that the AK extract and its components effectively mitigated the effects of nicotine treatment in behavioural tests. Furthermore, it normalized the dopamine concentration and the expression level of nicotine acetylcholine receptor α7. Additionally, it was observed that AK extract and its components led to the normalization of DRD1, ERK and CREB expression levels. These results indicate that AK extract exhibits effects in ameliorating nicotine dependence behaviour and alleviating withdrawal symptoms. Moreover, EB and CGA are considered potential marker components of AK extract.


Subject(s)
Eleutherococcus , Substance Withdrawal Syndrome , Tobacco Use Disorder , Animals , Mice , Tobacco Use Disorder/drug therapy , Nicotine/adverse effects , Dopamine , Substance Withdrawal Syndrome/drug therapy , Ethanol
2.
Article in English | MEDLINE | ID: mdl-37882810

ABSTRACT

RATIONALE: Serotonergic psychedelics exert their effects via their high affinity for serotonin (5-HT) receptors, particularly through activating 5-HT2A receptors (5-HT2AR), employing the frontal cortex-dependent head-twitch response (HTR). Although universally believed to be so, studies have not yet fully ascertained whether 5-HT2AR activation is the sole initiator of these psychedelic effects. This is because not all 5-HT2AR agonists exhibit similar pharmacologic properties. OBJECTIVE: This study aims to identify and discriminate the roles of 5-HT2AR and 5-HT2CR in the HTR induced by Methallylescaline (MAL) and 4-Methyl-2,5,ß-trimethoxyphenethylamine (BOD) in male mice. Also, an analysis of their potential neurotoxic properties was evaluated. METHODS: Male mice treated with MAL and BOD were evaluated in different behavioral paradigms targeting HTR and neurotoxicity effects. Drug affinity, pharmacological blocking, and molecular analysis were also conducted to support the behavioral findings. The HTR induced by DOI has been extensively characterized in male mice, making it a good positive control for this study, specifically for comparing the pharmacological effects of our test compounds. RESULTS: The activation of 5-HT2CR, alone or in concert with 5-HT2AR, produces a comparable degree of HTRs (at a dose of 1 mg·kg-1), with divergent 5-HT2CR- and 5-HT2AR-Gqα11-mediated signaling and enhanced neurotoxic properties (at a dose of 30 mg·kg-1) coupled with activated pro-inflammatory cytokines. These findings show these compounds' potential psychedelic and neurotoxic effects in male mice. CONCLUSION: These findings showed that while 5-HT2AR is the main initiator of HTR, the 5-HT2CR also has a distinct property that renders it effective in inducing HTR in male mice.

3.
J Ginseng Res ; 47(4): 583-592, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397415

ABSTRACT

Background: Alcohol is one of the most commonly used psychoactive drugs. Due to its addictive characteristics, many people struggle with the side effects of alcohol. Korean Red Ginseng (KRG) is a traditional herbal medicine that is widely used to treat various health problems. However, the effects and mechanisms of KRG in alcohol-induced responses remain unclear. Therefore, the purpose of this study was to investigate the effects of KRG in alcohol-induced responses. Methods: We investigated two aspects: alcohol-induced addictive responses and spatial working memory impairments. To determine the effects of KRG in alcohol-induced addictive responses, we performed conditioned place preference tests and withdrawal symptom observations. To assess the effects of KRG in alcohol-induced spatial working memory impairment, Y-maze, Barnes maze, and novel object recognition tests were performed using mice after repeated alcohol and KRG exposure. To investigate the potential mechanism of KRG activity, gas chromatography-mass spectrometry and western blot analysis were performed. Results: KRG-treated mice showed dose-dependent restoration of impaired spatial working memory following repeated alcohol exposure. Furthermore, withdrawal symptoms to alcohol were reduced in mice treated with KRG and alcohol. The PKA-CREB signaling pathway was activated after alcohol administration, which was reduced by KRG. However, the levels of inflammatory cytokines were increased by alcohol and decreased by KRG. Conclusion: Taken together, KRG may alleviate alcohol-induced spatial working memory impairments and addictive responses through anti-neuroinflammatory activity rather than through the PKA-CREB signaling pathway.

4.
Article in English | MEDLINE | ID: mdl-37141987

ABSTRACT

With the pervasive occurrence of substance abuse worldwide, unraveling the neuropharmacology of drugs of abuse, such as psychostimulants, is undeniably essential. Mice lacking Period 2 (Per2), a gene associated with the biological time-regulating system or circadian rhythm, have been proposed as a potential animal model for drug abuse vulnerability, demonstrating a greater preference for methamphetamine (METH) reward than wild-type (WT) mice. However, the responses of Per2 knockout (KO) mice to the reinforcing effects of METH or other psychostimulants are yet to be established. In this study, the responses of WT and Per2 KO mice to various psychostimulants via intravenous self-administration were determined, along with their behaviors in METH- or cocaine (COC)-induced conditioned place preference and spontaneous locomotion in the open-field test. Per2 KO mice exhibited greater addiction-like responses to METH and 5-EAPB (1-(1-benzofuran-5-yl)-N-ethylpropan-2-amine), but their responses to COC and dimethocaine were comparable to WT mice, indicating a divergent influence of Per2 deficiency on abuse susceptibility to specific psychostimulants. To potentially define the underlying mechanism for this phenotype, 19 differentially expressed genes were identified, through RNA sequencing, which might respond specifically to repeated METH, but not COC, administration in the mouse striatum and were narrowed down to those previously associated with immediate early genes or synaptic plasticity. The correlation between locomotor activity and mRNA expression levels revealed a moderate correlation between METH-induced behavior and Arc or Junb expression in Per2 KO mice only, suggesting their essential role that may lead to the higher vulnerability of Per2 KO mice to METH, but not COC. These findings indicate a potentially unique effect of Per2 expression level on the involvement of Arc and Junb in determining specific vulnerabilities to drugs, and possibly including abuse potential.


Subject(s)
Central Nervous System Stimulants , Cocaine , Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Cocaine/pharmacology , Mice, Knockout , Central Nervous System Stimulants/pharmacology , Reward , Period Circadian Proteins/genetics
5.
Front Pharmacol ; 14: 1135929, 2023.
Article in English | MEDLINE | ID: mdl-37007015

ABSTRACT

Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.

6.
Biomol Ther (Seoul) ; 31(2): 227-239, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36789738

ABSTRACT

Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

7.
Commun Biol ; 6(1): 55, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646879

ABSTRACT

Children with attention-deficit/hyperactivity disorder (ADHD) often struggle with impaired executive function, temporal processing, and visuospatial memory, hallmarks of the predominantly inattentive presentation (ADHD-PI), subserved by the hippocampus. However, the specific genes/proteins involved and how they shape hippocampal structures to influence ADHD behavior remain poorly understood. As an exploratory tool, hippocampal dentate gyri tissues from thyroid hormone-responsive protein overexpressing (THRSP OE) mice with defining characteristics of ADHD-PI were utilized in proteomics. Integrated proteomics and network analysis revealed an altered protein network involved in Wnt signaling. Compared with THRSP knockout (KO) mice, THRSP OE mice showed impaired attention and memory, accompanied by dysregulated Wnt signaling affecting hippocampal dentate gyrus cell proliferation and expression of markers for neural stem cell (NSC) activity. Also, combined exposure to an enriched environment and treadmill exercise could improve behavioral deficits in THRSP OE mice and Wnt signaling and NSC activity. These findings show new markers specific to the ADHD-PI presentation, converging with the ancient and evolutionary Wnt signaling pathways crucial for cell fate determination, migration, polarity, and neural patterning during neurodevelopment. These findings from THRSP OE mice support the role of Wnt signaling in neurological disorders, particularly ADHD-PI presentation.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Mice , Animals , Attention Deficit Disorder with Hyperactivity/genetics , Wnt Signaling Pathway , Proteomics , Hippocampus/metabolism , Mice, Knockout , Transcription Factors/metabolism
8.
Mol Neurobiol ; 59(7): 4292-4303, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35508866

ABSTRACT

Several individuals worldwide show cognitive impairment due to various reasons, including a prolonged lifespan and an altered lifestyle. Various causes, such as broken circadian rhythms and dopamine-related factors, have been proposed to be involved in the development of cognitive impairment. However, the underlying pathways remain elusive. Humans with circadian misalignment often face cognitive impairments, and animals with mutations in circadian rhythm-related genes display impaired cognitive functions. To analyze this in detail, this study aimed to investigate the pathways potentially involved in cognitive impairment using Period2 (Per2) transgenic animals. Spatial working memory performance in Per2 knockout (KO) and wild-type mice was assessed using the Barnes maze and Y-maze. The dopamine-related protein expression levels in the hippocampus were measured by Western blotting and enzyme-linked immunosorbent assay (ELISA). Per2 KO mice exhibited impaired spatial working memory, and the expression levels of dopamine receptor D1 (DRD1), protein kinase A (PKA), and cAMP response element-binding protein (CREB) were higher in Per2 KO mice than in control mice. Additionally, DRD1 expression levels were inversely proportional to those of PER2. Thus, memory tests were again conducted after administration of the DRD1 antagonist SCH-23390. Per2 KO mice recovered from memory impairment, and the levels of PKA and CREB decreased after treatment. The effects of Aß on memory in Per2 mice were also investigated, and we found the increased Aß levels did not influence the memory performance of Per2 mice after SCH-23390 treatment. These results indicate that Per2 expression levels might influence spatial working memory performance via DRD1-PKA-CREB-dependent signaling.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Memory, Short-Term , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dopamine/metabolism , Hippocampus/metabolism , Memory Disorders/metabolism , Mice , Mice, Knockout , Period Circadian Proteins/metabolism , Spatial Memory
9.
J Psychopharmacol ; 36(7): 875-891, 2022 07.
Article in English | MEDLINE | ID: mdl-35486444

ABSTRACT

BACKGROUND: Morphine abuse is a devastating disorder that affects millions of people worldwide, and literature evidence indicates a relationship between opioid abuse and the circadian clock. AIM: We explored morphine reward and reinforcement using mouse models with Per2 gene modifications (knockout (KO); overexpression (OE)). METHODS: Mice were exposed to various behavioral, electroencephalographic, pharmacological, and molecular tests to assess the effects of morphine and identify the underlying mechanisms with a focus on reward and reinforcement and the corresponding involvement of circadian and clock-controlled gene regulation. RESULTS: Per2 deletion enhances morphine-induced analgesia, locomotor sensitization, conditioned place preference (CPP), and self-administration (SA) in mice, whereas its overexpression attenuated these effects. In addition, reduced withdrawal was observed in Per2 KO mice, whereas an augmented withdrawal response was observed in Per2 OE mice. Moreover, naloxone and SCH 23390 blocked morphine CPP in Per2 KO and wild-type (WT) mice. The rewarding (CPP) and reinforcing effects (SA) observed in morphine-conditioned and morphine self-administered Per2 KO and WT mice were accompanied by activated µ-opioid and dopamine D1 receptors and TH in the mesolimbic (VTA/NAcc) system. Furthermore, genetic modifications of Per2 in mice innately altered some clock genes in response to morphine. CONCLUSION: These findings improve our understanding of the role of Per2 in morphine-induced psychoactive effects. Our data and those obtained in previous studies indicate that targeting Per2 may have applicability in the treatment of substance abuse.


Subject(s)
Circadian Clocks , Morphine , Period Circadian Proteins , Animals , Circadian Clocks/genetics , Mice , Morphine/pharmacology , Period Circadian Proteins/genetics , Receptors, Dopamine D1 , Reinforcement, Psychology , Reward
10.
Biomol Ther (Seoul) ; 30(3): 238-245, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35477688

ABSTRACT

Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.

11.
Commun Biol ; 4(1): 1101, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545202

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder, potentially with a biological basis; however, its exact cause remains unknown. Thyroid hormone (TH) abnormalities are more prevalent in patients with ADHD than in the general population, indicating a shared pathogenetic mechanism for these conditions. Previously, we identified that overexpression of thyroid hormone-responsive protein (THRSP), a gene highly responsive to TH status, induced inattention in male mice. Herein, we sought to explore whether TH function in THRSP-overexpressing (THRSP OE) mice influences ADHD-like (inattention) behavior. We now confirm that THRSP overexpression in male mice reproduces behavioral features of ADHD, including sustained inattention and memory impairment, accompanied by excessive theta waves that were found normal in both the THRSP-knockout and hetero groups. Physiological characterization revealed low striatal T3 levels in the THRSP OE mice due to reduced striatal T3-specific monocarboxylate transporter 8 (MCT8), indicating brain-specific hypothyroidism in this transgenic mouse strain. TH replacement for seven days rescued inattention and memory impairment and the normalization of theta waves. This study further supports the involvement of the upregulated THRSP gene in ADHD pathology and indicates that THRSP OE mice can serve as an animal model for the predominantly inattentive subtype of ADHD.


Subject(s)
Attention , Corpus Striatum/chemistry , Gene Expression Regulation , Memory Disorders/physiopathology , Transcription Factors/genetics , Triiodothyronine/metabolism , Animals , Attention Deficit Disorder with Hyperactivity , Disease Models, Animal , Male , Mice , Transcription Factors/metabolism
13.
Neuropharmacology ; 193: 108619, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34023336

ABSTRACT

The newfound antidepressant efficacy of ketamine has provided opportunities for the development of new-generation, rapid-acting, glutamate-based antidepressants. We previously identified that methoxetamine (MXE), a ketamine analog, and an N-Methyl-d-aspartate (NMDA) receptor antagonist, produced rapid and sustained antidepressant effects in mice. MXE (R, S (±)-MXE) is a racemic mixture containing equal parts of S (+)-MXE and R (-)-MXE. However, studies have yet to investigate the antidepressant effects of its enantiomers. Here, we examined the potential antidepressant properties and behavioral side effects of S- and R-MXE in mice. Both S- and R-MXE showed significant NMDA receptor affinity and appreciable inhibitory activity on serotonin transporter. Also, S- and R-MXE (10 mg kg-1) exerted antidepressant effects and increased gamma waves (electroencephalography) but were inhibited by NBQX (an AMPA receptor antagonist). Subsequently, they increased mammalian target of rapamycin phosphorylation and AMPA receptor subunits GluA1 and GluA2 protein levels in the hippocampus or prefrontal cortex. Furthermore, they increased 5HT2a and 5HT2c receptor mRNA levels in the prefrontal cortex, with their antidepressant effects inhibited by ketanserin (a 5HT2a/c receptor antagonist). Taken together, S-MXE and R-MXE elicit antidepressant effects that are probably mediated via glutamatergic and serotonergic mechanisms. Unlike S-MXE, R-MXE did not induce prepulse inhibition deficits, hyperlocomotion, conditioned place preference, and locomotor sensitization, although it acutely altered motor coordination. This suggests that R-MXE induces fewer behavioral side effects and is a safer antidepressant than S-MXE. Overall, this study provides significant implications for future research on the next generation of rapid-acting, glutamate-based antidepressant drugs.


Subject(s)
Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacology , Cyclohexanones/pharmacology , Cyclohexylamines/pharmacology , Depression/drug therapy , Depression/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cyclohexanones/adverse effects , Cyclohexylamines/adverse effects , Elevated Plus Maze Test , HEK293 Cells , Hindlimb Suspension , Humans , Ketamine , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Receptors, AMPA/metabolism , Receptors, Serotonin/metabolism , mTOR Associated Protein, LST8 Homolog/metabolism
14.
Neurochem Int ; 144: 104962, 2021 03.
Article in English | MEDLINE | ID: mdl-33460722

ABSTRACT

The recreational use of N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP) and ketamine have grown rapidly due to their psychotomimetic properties. These compounds induce both non-fatal and fatal adverse effects and despite the enhanced regulation, they are continuously synthesized and are being sold in the illegal drug market, including 1-phenylcyclohexan-1-amine hydrochloride (PCA). Therefore, we evaluated its abuse potential through the conditioned-place preference (CPP), self-administration, and locomotor sensitization paradigms. Pretreatment with SCH 2 3390 and haloperidol was also performed during a CPP test. We used ELISA to measure dopamine (DA) levels and western blotting to determine effects on the DA-related proteins as well as on phosphorylated CREB, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) and nucleus accumbens (NAc). Finally, we examined the effects on brain wave activity using electroencephalography (EEG). PCA induced CPP in mice and was self-administered by rats, suggesting that PCA has rewarding and reinforcing properties. PCA increased locomotor of mice on the first treatment and challenge days. SCH 23390 and haloperidol blocked the CPP. PCA altered the DA, tyrosine hydroxylase, dopamine D1 and D2 receptors as well as p-CREB and deltaFosB. Also, PCA altered the delta and gamma waves in the brain, which were then normalized by SCH 2 3390 and haloperidol. The present findings indicate that PCA may induce abuse potential through the dopaminergic system and probably accompanied with alterations in brain wave activity which is similar to that of other psychotomimetic NMDA antagonists. We advocate thorough monitoring of PCP analogs as they pose potential harm to public health.


Subject(s)
Cyclohexylamines/administration & dosage , Dopamine , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Reward , Ventral Tegmental Area/drug effects , Animals , Dopamine/metabolism , Drug Evaluation, Preclinical/methods , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Rodentia , Self Administration , Ventral Tegmental Area/metabolism
15.
Biomol Ther (Seoul) ; 29(2): 135-143, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33342769

ABSTRACT

Drug addiction influences most communities directly or indirectly. Increasing studies have reported the relationship between circadian-related genes and drug addiction. Per2 disrupted mice exhibited more vulnerable behavioral responses against some drugs including methamphetamine (METH). However, its roles and mechanisms are still not clear. Transcriptional profiling analysis in Per2 knockout (KO) mice may provide a valuable tool to identify potential genetic involvement and pathways in enhanced behavioral responses against drugs. To explore the potential genetic involvement, we examined common differentially expressed genes (DEGs) in the striatum of drug naïve Per2 KO/wild-type (WT) mice, and before/after METH treatment in Per2 KO mice, but not in WT mice. We selected 9 common DEGs (Ncald, Cpa6, Pklr, Ttc29, Cbr2, Egr2, Prg4, Lcn2, and Camsap2) based on literature research. Among the common DEGs, Ncald, Cpa6, Pklr, and Ttc29 showed higher expression levels in drug naïve Per2 KO mice than in WT mice, while they were downregulated in Per2 KO mice after METH treatment. In contrast, Cbr2, Egr2, Prg4, Lcn2, and Camsap2 exhibited lower expression levels in drug naïve Per2 KO mice than in WT mice, while they were upregulated after METH treatment in Per2 KO mice. qRT-PCR analyses validated the expression patterns of 9 target genes before/after METH treatment in Per2 KO and WT mice. Although further research is required to deeply understand the relationship and roles of the 9 target genes in drug addiction, the findings from the present study indicate that the target genes might play important roles in drug addiction.

16.
Addict Biol ; 26(4): e12981, 2021 07.
Article in English | MEDLINE | ID: mdl-33135332

ABSTRACT

Novel psychoactive substances remain the popular recreational drugs of use over the years. They continue to bypass government restrictions due to their synthesis and modifications. Recent additions to the lists are the 4-F-PCP and 4-Keto-PCP, analogs of the drug phencyclidine (PCP) known to induce adverse effects and abuse potential. However, studies on the abuse potential of 4-F-PCP and 4-Keto-PCP remain scarce. The rewarding and reinforcing effects of the drugs were assessed using conditioned place preference (CPP), self-administration, and locomotor sensitization tests. Dopamine (DA) receptor antagonists (SCH23390 and haloperidol) were administered during CPP to evaluate the involvement of the mesolimbic dopaminergic system. DA-related protein expression in the nucleus accumbens (NAcc) and ventral tegmental area (VTA) was measured. Additionally, phosphorylated cyclic-adenosine monophosphate-activated protein (AMP) response element-binding (p-CREB) protein, deltaFosB (∆FosB), and brain-derived neurotrophic factor (BDNF) protein levels in the NAcc were measured to assess the addiction neural plasticity effect of the drugs. Both 4-F-PCP and 4-Keto-PCP-induced CPP and self-administration; however, only 4-F-PCP elicited locomotor sensitization. Treatment with DA receptor antagonists (SH23390 and haloperidol) inhibited the 4-F- and 4-Keto-induced CPP. Both substances altered the levels of DA receptor D1 (DRD1), thyroxine hydroxylase (TH), DA receptor D2 (DRD2), p-CREB, ∆FosB, and BDNF. The results suggest that 4-F-PCP and 4-Keto-PCP may induce abuse potential in rodents via alterations in dopaminergic system accompanied by addiction neural plasticity.


Subject(s)
Conditioning, Operant/drug effects , Dopamine Antagonists/pharmacology , Dopamine/metabolism , Illicit Drugs/metabolism , Synthetic Drugs/metabolism , Animals , Mice , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Rats , Reinforcement, Psychology , Reward , Self Administration , Ventral Tegmental Area/drug effects
17.
Eur J Pharmacol ; 885: 173527, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32871174

ABSTRACT

Accounts regarding the use of novel psychoactive substances continue to escalate annually. These include reports on substituted benzofurans (SBs), such as 1-(1-benzofuran-2-yl)-N-ethylpropan-2-amine (2-EAPB) and 1-(1-benzofuran-5-yl)-N-ethylpropan-2-amine (5-EAPB). Reports on the deaths and adverse consequences from the use of SBs warrant the investigation of their mechanism, possibly predicting the effects of similar compounds. Accordingly, we investigated the possible rewarding and reinforcing effects of 2-EAPB and 5-EAPB through conditioned place preference (CPP), self-administration, and locomotor sensitization tests. We also determined the possible influence of 2-EAPB and 5-EAPB administration on dopamine- and plasticity-related proteins in the nucleus accumbens and ventral tegmental area. 2-EAPB and 5-EAPB induced CPP at different doses and were self-administered by rats. Only 5-EAPB induced locomotor sensitization in mice. 2-EAPB and 5-EAPB did not alter the expressions of dopamine D1 and D2 receptors in the nucleus accumbens, nor changed tyrosine hydroxylase and dopamine transporter expressions in the ventral tegmental area. Both 2-EAPB and 5-EAPB enhanced deltaFosB, but not transcription factor cyclic AMP-response-element binding protein and brain-derived neurotrophic factor in the nucleus accumbens. Hence, the potential rewarding and reinforcing effects on rodents induced by 2-EAPB and 5-EAPB may possibly be associated with alterations in other neurotransmitter systems (besides mesolimbic) and/or neuro-plastic modifications.


Subject(s)
Benzofurans/pharmacology , Conditioning, Operant/drug effects , Psychotropic Drugs/pharmacology , Reward , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element Modulator/metabolism , Dopamine/metabolism , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Self Administration , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
18.
J Psychopharmacol ; 34(9): 1056-1067, 2020 09.
Article in English | MEDLINE | ID: mdl-32648801

ABSTRACT

BACKGROUND: Recently, the recreational use of substituted phenethylamines has grown rapidly. Among these are 2-(3,5-dimethoxy-4-((2-methylallyl)oxy)phenyl)ethanamine (MAL) and 2-(2,5-dimethoxy-4-methylphenyl)-2-methoxyethan-1-amine (BOD). However, studies characterizing their abuse potential are still lacking. AIM: The purpose of this study was to investigate the abuse potential of MAL and BOD. METHODS: The psychostimulant, reinforcing, and rewarding properties of MAL and BOD were analyzed using locomotor sensitization, self-administration, and conditioned place preference tests. Dopamine antagonists (i.e. SCH23390, haloperidol) were administered during conditioned place preference to evaluate the involvement of the mesolimbic dopamine system. Furthermore, dopamine-related protein expression in the nucleus accumbens and the ventral tegmental area was measured along with dopamine concentrations in the nucleus accumbens. Electroencephalography was conducted to determine effects of MAL and BOD on brain wave activity. RESULTS: MAL induced psychostimulant effects and sensitization, while BOD induced locomotor depression in mice. Only MAL was self-administered by rats. Both drugs induced conditioned place preference in mice at different doses; dopamine receptor antagonists blocked MAL- and BOD-induced conditioned place preference. Both the compounds altered the expression of dopamine receptor D1 and D2 proteins in the nucleus accumbens and tyrosine hydroxylase (TH) and dopamine transporter in the ventral tegmental area, enhanced dopamine levels in the nucleus accumbens, and increased delta and gamma wave activities in the brain. CONCLUSIONS: MAL may induce abuse potential via the mesolimbic dopaminergic system and possibly accompanied by alterations in brain wave activity. Moreover, the lack of rewarding and reinforcing effects in BOD suggest that this drug may have little to no capability to engender compulsive behavior, though having found to induce alterations in dopaminergic system and brain wave activities.


Subject(s)
Behavior, Animal/drug effects , Brain Waves/drug effects , Central Nervous System Sensitization/drug effects , Central Nervous System Stimulants/pharmacology , Conditioning, Psychological/drug effects , Dopamine Antagonists/pharmacology , Locomotion/drug effects , Nucleus Accumbens/drug effects , Phenethylamines/pharmacology , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Ventral Tegmental Area/drug effects , Animals , Central Nervous System Stimulants/administration & dosage , Dopamine Antagonists/administration & dosage , Male , Mice , Mice, Inbred C57BL , Phenethylamines/administration & dosage
19.
Biomol Ther (Seoul) ; 28(1): 83-91, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31230432

ABSTRACT

Tryptamines are monoamine alkaloids with hallucinogenic properties and are widely abused worldwide. To hasten the regulations of novel substances and predict their abuse potential, we designed and synthesized four novel synthetic tryptamine analogs: Pyrrolidino tryptamine hydrochloride (PYT HCl), Piperidino tryptamine hydrochloride (PIT HCl), N,N-dibutyl tryptamine hydrochloride (DBT HCl), and 2-Methyl tryptamine hydrochloride (2-MT HCl). Then, we evaluated their rewarding and reinforcing effects using the conditioned place preference (CPP) and self-administration (SA) paradigms. We conducted an open field test (OFT) to determine the effects of the novel compounds on locomotor activity. A head-twitch response (HTR) was also performed to characterize their hallucinogenic properties. Lastly, we examined the effects of the compounds on 5-HTR1a and 5-HTR2a in the prefrontal cortex using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. None of the compounds induced CPP in mice or initiated SA in rats. PYT HCl and PIT HCl reduced the locomotor activity and elevated the 5-HTR1a mRNA levels in mice. Acute and repeated treatment with the novel tryptamines elicited HTR in mice. Furthermore, a drug challenge involving a 7-day abstinence from drug use produced higher HTR than acute and repeated treatments. Both the acute treatment and drug challenge increased the 5-HTR2a mRNA levels. Ketanserin blocked the induced HTR. Taken together, the findings suggest that PYT HCl, PIT HCl, DBT HCl, and 2-MT HCl produce hallucinogenic effects via 5-HTR2a stimulation, but may have low abuse potential.

20.
Psychopharmacology (Berl) ; 237(3): 757-772, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31828394

ABSTRACT

RATIONALE: A high number of synthetic dissociative drugs continue to be available through online stores, leading to their misuse. Recent inclusions in this category are 4-MeO-PCP and 3-MeO-PCMo, analogs of phencyclidine. Although the dissociative effects of these drugs and their recreational use have been reported, no studies have investigated their abuse potential. OBJECTIVES: To examine their rewarding and reinforcing effects and explore the mechanistic correlations. METHODS: We used conditioned place preference (CPP), self-administration, and locomotor sensitization tests to assess the rewarding and reinforcing effects of the drugs. We explored their mechanism of action by pretreating dopamine receptor (DR) D1 antagonist SCH23390 and DRD2 antagonist haloperidol during CPP test and investigated the effects of 4-MeO-PCP and 3-MeO-PCMo on dopamine-related proteins in the ventral tegmental area and nucleus accumbens. We also measured the levels of dopamine, phosphorylated cyclic-AMP response element-binding (p-CREB) protein, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens. Additionally, we examined the effects of both drugs on brain wave activity using electroencephalography. RESULTS: While both 4-MeO-PCP and 3-MeO-PCMo induced CPP and self-administration, only 4-MeO-PCP elicited locomotor sensitization. SCH23390 and haloperidol inhibited the acquisition of drug CPP. 4-MeO-PCP and 3-MeO-PCMo altered the levels of tyrosine hydroxylase, DRD1, DRD2, and dopamine, as well as that of p-CREB, deltaFosB, and BDNF. All drugs increased the delta and gamma wave activity, whereas pretreatment with SCH23390 and haloperidol inhibited it. CONCLUSION: Our results indicate that 4-MeO-PCP and 3-MeO-PCMo induce rewarding and reinforcing effects that are probably mediated by the mesolimbic dopamine system, suggesting an abuse liability in humans.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dopamine/metabolism , Morpholines/administration & dosage , Nucleus Accumbens/metabolism , Phencyclidine/analogs & derivatives , Proto-Oncogene Proteins c-fos/metabolism , Animals , Designer Drugs/administration & dosage , Illicit Drugs/pharmacology , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/drug effects , Phencyclidine/administration & dosage , Rats , Rats, Sprague-Dawley , Reward , Self Administration , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...