Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 20444, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235278

ABSTRACT

Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in higher latitudes spanning from the English Channel to the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web, but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii, were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized the exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase, free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Mannitol, scyllo-inositol, 24-methylcholesta-5,22-dien-3ß-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms but showed variability between them. Distinct metabolic profiles were detected in the nutrient-depleted community in the inner Porsangerfjord (< 0.5 µM NO3-, < 0.1 µM PO 4 3- ), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study thereby shows how the variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.


Subject(s)
Haptophyta/growth & development , Metabolomics/methods , Phytoplankton/growth & development , Batch Cell Culture Techniques , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Haptophyta/metabolism , Phytoplankton/metabolism , Sterols/analysis , Sugar Alcohols/analysis , Terpenes/analysis
2.
Data Brief ; 22: 821-825, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30705927

ABSTRACT

This data article contains data on the photosynthetic activity, shares of the main algae groups in the total phytoplankton biomass and the main environmental forces in the Kara Sea. The data were collected from 17 to 29 of September, 2011 in the following different areas: the Kara Sea Shelf with and without river runoff influence, the shelf edge and continental slope. The photosynthetic activity parameters include the relative electron transport rate (rETR) values, the maximum quantum efficiency of PSII (Fv/Fm) and the PB/rETR ratio as photosynthetic performance. The main environmental forces include the average day incident light, salinity and water temperature in the upper mixed layer and dissolved nutrients. The data presented in this article are associated with the research article entitled "Assessment of phytoplankton photosynthetic efficiency based on measurement of fluorescence parameters and radiocarbon uptake in the Kara Sea" (Mosharov et al., 2019). The related research article examines the relationships between biological parameters and with environmental characteristics such as temperature, salinity, incident photosynthetically active radiation (PAR) and nutrient concentration.

3.
Sci Rep ; 6: 29286, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404551

ABSTRACT

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.


Subject(s)
Light , Photosynthesis , Plankton/physiology , Animals , Autotrophic Processes , Biomass , Ecosystem , Heterotrophic Processes , Mediterranean Sea , Organ Specificity , Predatory Behavior
4.
PLoS One ; 9(4): e94388, 2014.
Article in English | MEDLINE | ID: mdl-24721992

ABSTRACT

We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3°C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13-16 µg chlorophyll (chl) a l-1. In the control mesocosms, chl a remained below 1 µg l-1. Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.


Subject(s)
Ciliophora/physiology , Diatoms/physiology , Dinoflagellida/physiology , Models, Statistical , Phytoplankton/physiology , Biomass , Chlorophyll/biosynthesis , Chlorophyll A , Climate , Climate Change , Eutrophication , Food Chain , Forecasting , Heterotrophic Processes , Hydrogen-Ion Concentration , Norway , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...