Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nat Commun ; 14(1): 7209, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938582

ABSTRACT

The metastasis-invasion cascade describes the series of steps required for a cancer cell to successfully spread from its primary tumor and ultimately grow within a secondary organ. Despite metastasis being a dynamic, multistep process, most omics studies to date have focused on comparing primary tumors to the metastatic deposits that define end-stage disease. This static approach means we lack information about the genomic and epigenomic changes that occur during the majority of tumor progression. One particularly understudied phase of tumor progression is metastatic colonization, during which cells must adapt to the new microenvironment of the secondary organ. Through temporal profiling of chromatin accessibility and gene expression in vivo, we identify dynamic changes in the epigenome that occur as osteosarcoma tumors form and grow within the lung microenvironment. Furthermore, we show through paired in vivo and in vitro CRISPR drop-out screens and pharmacological validation that the upstream transcription factors represent a class of metastasis-specific dependency genes. While current models depict lung colonization as a discrete step within the metastatic cascade, our study shows it is a defined trajectory through multiple epigenetic states, revealing new therapeutic opportunities undetectable with standard approaches.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Chromatin/genetics , Osteosarcoma/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Epigenome , Bone Neoplasms/genetics , Tumor Microenvironment
3.
J Transl Genet Genom ; 7(1): 3-16, 2023.
Article in English | MEDLINE | ID: mdl-36817228

ABSTRACT

Aim: Obesity and obesogenic diets might partly accelerate cancer development through epigenetic mechanisms. To determine these early effects, we investigated the impact of three days of a high-fat diet on epigenomic and transcriptomic changes in Apc Min/+ murine intestinal epithelia. Method: ChIP-Seq and RNA-Seq were performed on small intestinal epithelia of WT and Apc Min/+ male mice fed high-fat diet (HFD) or low-fat diet (LFD) for three days to identify genomic regions associated with differential H3K27ac levels as a marker of variant enhancer loci (VELs) as well as differentially expressed genes (DEGs). Results: Regarding epigenetic and transcriptomic changes, diet type (LFD vs. HFD) showed a significant impact, and genotype (WT vs.Apc Min/+) showed a small impact. Compared to LFD, HFD resulted in 1306 gained VELs, 230 lost VELs, 133 upregulated genes, and 127 downregulated genes in WT mice, with 1056 gained VELs, 371 lost VELs, 222 upregulated genes, and 182 downregulated genes in Apc Min/+ mice. Compared to the WT genotype, the Apc Min/+ genotype resulted in zero changed VELs for either diet type group, 21 DEGs for LFD, and 48 DEGs for HFD. Most gained VELs, and upregulated genes were associated with lipid metabolic processes. Gained VELs were also associated with Wnt signaling. Downregulated genes were associated with antigen presentation and processing. Conclusion: Three days of HFD-induced epigenomic and transcriptomic changes involving metabolic and immunologic pathways that may promote tumor growth in the genetically predisposed murine intestine without affecting key cancer signaling pathways.

4.
Cancer Res ; 82(22): 4274-4287, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36126163

ABSTRACT

In multiple types of cancer, an increased frequency in myeloid-derived suppressor cells (MDSC) is associated with worse outcomes and poor therapeutic response. In the glioblastoma (GBM) microenvironment, monocytic (m) MDSCs represent the predominant subset. However, the molecular basis of mMDSC enrichment in the tumor microenvironment compared with granulocytic (g) MDSCs has yet to be determined. Here we performed the first broad epigenetic profiling of MDSC subsets to define underlying cell-intrinsic differences in behavior and found that enhanced gene accessibility of cell adhesion programs in mMDSCs is linked to their tumor-accelerating ability in GBM models upon adoptive transfer. Mouse and human mMDSCs expressed higher levels of integrin ß1 and dipeptidyl peptidase-4 (DPP-4) compared with gMDSCs as part of an enhanced cell adhesion signature. Integrin ß1 blockade abrogated the tumor-promoting phenotype of mMDSCs and altered the immune profile in the tumor microenvironment, whereas treatment with a DPP-4 inhibitor extended survival in preclinical GBM models. Targeting DPP-4 in mMDSCs reduced pERK signaling and their migration towards tumor cells. These findings uncover a fundamental difference in the molecular basis of MDSC subsets and suggest that integrin ß1 and DPP-4 represent putative immunotherapy targets to attenuate myeloid cell-driven immune suppression in GBM. SIGNIFICANCE: Epigenetic profiling uncovers cell adhesion programming as a regulator of the tumor-promoting functions of monocytic myeloid-derived suppressor cells in glioblastoma, identifying therapeutic targets that modulate the immune response and suppress tumor growth.


Subject(s)
Cell Adhesion , Glioblastoma , Myeloid-Derived Suppressor Cells , Animals , Humans , Mice , Glioblastoma/metabolism , Glioblastoma/pathology , Integrin beta1/metabolism , Myeloid-Derived Suppressor Cells/pathology , Tumor Microenvironment
5.
Mol Psychiatry ; 27(4): 2158-2170, 2022 04.
Article in English | MEDLINE | ID: mdl-35301427

ABSTRACT

Opioid use disorder is a highly heterogeneous disease driven by a variety of genetic and environmental risk factors which have yet to be fully elucidated. Opioid overdose, the most severe outcome of opioid use disorder, remains the leading cause of accidental death in the United States. We interrogated the effects of opioid overdose on the brain using ChIP-seq to quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. Machine learning on H3K27ac patterns predicted case-control status with high accuracy. We focused on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes over-burdened by alterations in their regulatory network or "plexus": ASTN2, KCNMA1, DUSP4, GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and heritability for generalized anxiety, number of sexual partners, and years of education. Overall, our multi-pronged approach uncovers neurobiological aspects of opioid use disorder and captures genetic and environmental factors perpetuating the opioid epidemic.


Subject(s)
Opiate Overdose , Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Epigenesis, Genetic/genetics , Humans , Machine Learning , Opioid-Related Disorders/drug therapy , United States
6.
Article in English | MEDLINE | ID: mdl-34187809

ABSTRACT

The change in cell state from normal to malignant is driven fundamentally by oncogenic mutations in cooperation with epigenetic alterations of chromatin. These alterations in chromatin can be a consequence of environmental stressors or germline and/or somatic mutations that directly alter the structure of chromatin machinery proteins, their levels, or their regulatory function. These changes can result in an inability of the cell to differentiate along a predefined lineage path, or drive a hyperactive, highly proliferative state with addiction to high levels of transcriptional output. We discuss how these genetic alterations hijack the chromatin machinery for the oncogenic process to reveal unique vulnerabilities and novel targets for cancer therapy.


Subject(s)
Chromatin , Neoplasms , Epigenesis, Genetic , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology
7.
Sci Rep ; 10(1): 17445, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060836

ABSTRACT

CHARGE syndrome, a rare multiple congenital anomaly condition, is caused by haploinsufficiency of the chromatin remodeling protein gene CHD7 (Chromodomain helicase DNA binding protein 7). Brain abnormalities and intellectual disability are commonly observed in individuals with CHARGE, and neuronal differentiation is reduced in CHARGE patient-derived iPSCs and conditional knockout mouse brains. However, the mechanisms of CHD7 function in nervous system development are not well understood. In this study, we asked whether CHD7 promotes gene transcription in neural progenitor cells via changes in chromatin accessibility. We used Chd7 null embryonic stem cells (ESCs) derived from Chd7 mutant mouse blastocysts as a tool to investigate roles of CHD7 in neuronal and glial differentiation. Loss of Chd7 significantly reduced neuronal and glial differentiation. Sholl analysis showed that loss of Chd7 impaired neuronal complexity and neurite length in differentiated neurons. Genome-wide studies demonstrated that loss of Chd7 leads to modified chromatin accessibility (ATAC-seq) and differential nascent expression (Bru-Seq) of neural-specific genes. These results suggest that CHD7 acts preferentially to alter chromatin accessibility of key genes during the transition of NPCs to neurons to promote differentiation. Our results form a basis for understanding the cell stage-specific roles for CHD7-mediated chromatin remodeling during cell lineage acquisition.


Subject(s)
Chromatin/chemistry , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Neural Stem Cells/cytology , Neurons/cytology , Animals , Blastocyst/metabolism , Cell Differentiation , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Expression Profiling , Mice , Mice, Knockout , Transcription Factors/metabolism
8.
Mol Cell ; 79(3): 521-534.e15, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32592681

ABSTRACT

Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.


Subject(s)
Chromatin/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Genome, Human , Neurogenesis/genetics , Promoter Regions, Genetic , Adult , Cell Line , Cerebrum/cytology , Cerebrum/growth & development , Cerebrum/metabolism , Chromatin/ultrastructure , Chromosome Mapping , Fetus , Histones/genetics , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/cytology , Neurons/metabolism , Temporal Lobe/cytology , Temporal Lobe/growth & development , Temporal Lobe/metabolism , Transcription Factors/classification , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32246942

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Subject(s)
Cell Communication/genetics , Disease/genetics , Oligodendroglia/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/physiopathology , Myelin Sheath/metabolism , Neurons/metabolism , Oligodendroglia/physiology , Risk Factors
10.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31761532

ABSTRACT

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Subject(s)
Chromosomes, Human/genetics , Enhancer Elements, Genetic , Gene Amplification , Oncogenes , Acetylation , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Survival/genetics , Chromatin/metabolism , DNA, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Genes, Neoplasm , Genetic Loci , Glioblastoma/genetics , Glioblastoma/pathology , Histones/metabolism , Humans , Neuroglia/metabolism
11.
J Clin Invest ; 129(10): 4377-4392, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31498151

ABSTRACT

Despite progress in intensification of therapy, outcomes for patients with metastatic osteosarcoma (OS) have not improved in thirty years. We developed a system that enabled preclinical screening of compounds against metastatic OS cells in the context of the native lung microenvironment. Using this strategy to screen a library of epigenetically targeted compounds, we identified inhibitors of CDK12 to be most effective, reducing OS cell outgrowth in the lung by more than 90% at submicromolar doses. We found that knockout of CDK12 in an in vivo model of lung metastasis significantly decreased the ability of OS to colonize the lung. CDK12 inhibition led to defects in transcription elongation in a gene length- and expression-dependent manner. These effects were accompanied by defects in RNA processing and altered the expression of genes involved in transcription regulation and the DNA damage response. We further identified OS models that differ in their sensitivity to CDK12 inhibition in the lung and provided evidence that upregulated MYC levels may mediate these differences. Our studies provided a framework for rapid preclinical testing of compounds with antimetastatic activity and highlighted CDK12 as a potential therapeutic target in OS.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Osteosarcoma/enzymology , Osteosarcoma/secondary , Animals , Cell Line, Tumor , Cyclin-Dependent Kinases/genetics , Drug Screening Assays, Antitumor , Female , Gene Knockout Techniques , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice , Mice, SCID , Osteosarcoma/genetics , Protein Kinase Inhibitors/pharmacology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology
12.
Cancer Res ; 79(18): 4599-4611, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31358529

ABSTRACT

Chemoresistance is driven by unique regulatory networks in the genome that are distinct from those necessary for cancer development. Here, we investigate the contribution of enhancer elements to cisplatin resistance in ovarian cancers. Epigenome profiling of multiple cellular models of chemoresistance identified unique sets of distal enhancers, super-enhancers (SE), and their gene targets that coordinate and maintain the transcriptional program of the platinum-resistant state in ovarian cancer. Pharmacologic inhibition of distal enhancers through small-molecule epigenetic inhibitors suppressed the expression of their target genes and restored cisplatin sensitivity in vitro and in vivo. In addition to known drivers of chemoresistance, our findings identified SOX9 as a critical SE-regulated transcription factor that plays a critical role in acquiring and maintaining the chemoresistant state in ovarian cancer. The approach and findings presented here suggest that integrative analysis of epigenome and transcriptional programs could identify targetable key drivers of chemoresistance in cancers. SIGNIFICANCE: Integrative genome-wide epigenomic and transcriptomic analyses of platinum-sensitive and -resistant ovarian lines identify key distal regulatory regions and associated master regulator transcription factors that can be targeted by small-molecule epigenetic inhibitors.


Subject(s)
Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/pathology , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Drug Resistance, Neoplasm/drug effects , Epigenomics , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcriptome , Tumor Cells, Cultured
13.
J Exp Med ; 216(5): 1071-1090, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30948495

ABSTRACT

Glioblastoma is an incurable brain cancer characterized by high genetic and pathological heterogeneity. Here, we mapped active chromatin landscapes with gene expression, whole exomes, copy number profiles, and DNA methylomes across 44 patient-derived glioblastoma stem cells (GSCs), 50 primary tumors, and 10 neural stem cells (NSCs) to identify essential super-enhancer (SE)-associated genes and the core transcription factors that establish SEs and maintain GSC identity. GSCs segregate into two groups dominated by distinct enhancer profiles and unique developmental core transcription factor regulatory programs. Group-specific transcription factors enforce GSC identity; they exhibit higher activity in glioblastomas versus NSCs, are associated with poor clinical outcomes, and are required for glioblastoma growth in vivo. Although transcription factors are commonly considered undruggable, group-specific enhancer regulation of the MAPK/ERK pathway predicts sensitivity to MEK inhibition. These data demonstrate that transcriptional identity can be leveraged to identify novel dependencies and therapeutic approaches.


Subject(s)
Brain Neoplasms/genetics , Chromatin/genetics , Glioblastoma/genetics , Transcription, Genetic/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Carcinogenesis/genetics , Cell Line, Tumor , Cohort Studies , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioblastoma/surgery , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Transcription Factors/genetics , Transcriptome
14.
Elife ; 82019 02 13.
Article in English | MEDLINE | ID: mdl-30759065

ABSTRACT

Commonly-mutated genes have been found for many cancers, but less is known about mutations in cis-regulatory elements. We leverage gains in tumor-specific enhancer activity, coupled with allele-biased mutation detection from H3K27ac ChIP-seq data, to pinpoint potential enhancer-activating mutations in colorectal cancer (CRC). Analysis of a genetically-diverse cohort of CRC specimens revealed that microsatellite instable (MSI) samples have a high indel rate within active enhancers. Enhancers with indels show evidence of positive selection, increased target gene expression, and a subset is highly recurrent. The indels affect short homopolymer tracts of A/T and increase affinity for FOX transcription factors. We further demonstrate that signature mismatch-repair (MMR) mutations activate enhancers using a xenograft tumor metastasis model, where mutations are induced naturally via CRISPR/Cas9 inactivation of MLH1 prior to tumor cell injection. Our results suggest that MMR signature mutations activate enhancers in CRC tumor epigenomes to provide a selective advantage.


Subject(s)
Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , Enhancer Elements, Genetic/genetics , Epigenome , Mutation/genetics , Acetylation , Animals , Base Sequence , Cell Line, Tumor , Gene Expression Regulation , Histones/metabolism , Humans , INDEL Mutation/genetics , Lysine/metabolism , Mice , Microsatellite Instability , Nucleotide Motifs/genetics , Phenotype , Selection, Genetic , Transcription Factors/metabolism
15.
Stem Cell Reports ; 12(1): 122-134, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30629937

ABSTRACT

Tumor-initiating cells (TICs) contribute to drug resistance and tumor recurrence in cancers, thus experimental approaches to dissect the complexity of TICs are required to design successful TIC therapeutic strategies. Here, we show that miRNA-3' UTR sensor vectors can be used as a pathway-based method to identify, enrich, and analyze TICs from primary solid tumor patient samples. We have found that an miR-181ahigh subpopulation of cells sorted from primary ovarian tumor cells exhibited TIC properties in vivo, were enriched in response to continuous cisplatin treatment, and showed activation of numerous major stem cell regulatory pathways. This miRNA-sensor-based platform enabled high-throughput drug screening leading to identification of BET inhibitors as transcriptional inhibitors of miR-181a. Taken together, we provide a valuable miRNA-sensor-based approach to broaden the understanding of complex TIC regulatory mechanisms in cancers and to identify miRNA-targeting drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Biosensing Techniques/methods , Drug Discovery/methods , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , 3' Untranslated Regions , Cell Line, Tumor , Female , Humans , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
16.
Nat Med ; 24(9): 1469-1480, 2018 09.
Article in English | MEDLINE | ID: mdl-30038216

ABSTRACT

The degree of intrinsic and interpatient phenotypic heterogeneity and its role in tumor evolution is poorly understood. Phenotypic drifts can be transmitted via inheritable transcriptional programs. Cell-type specific transcription is maintained through the activation of epigenetically defined regulatory regions including promoters and enhancers. Here we have annotated the epigenome of 47 primary and metastatic estrogen-receptor (ERα)-positive breast cancer clinical specimens and inferred phenotypic heterogeneity from the regulatory landscape, identifying key regulatory elements commonly shared across patients. Shared regions contain a unique set of regulatory information including the motif for transcription factor YY1. We identify YY1 as a critical determinant of ERα transcriptional activity promoting tumor growth in most luminal patients. YY1 also contributes to the expression of genes mediating resistance to endocrine treatment. Finally, we used H3K27ac levels at active enhancer elements as a surrogate of intra-tumor phenotypic heterogeneity to track the expansion and contraction of phenotypic subpopulations throughout breast cancer progression. By tracking the clonality of SLC9A3R1-positive cells, a bona fide YY1-ERα-regulated gene, we show that endocrine therapies select for phenotypic clones under-represented at diagnosis. Collectively, our data show that epigenetic mechanisms significantly contribute to phenotypic heterogeneity and evolution in systemically treated breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Clonal Evolution , Enhancer Elements, Genetic/genetics , Cell Line, Tumor , Clone Cells , Epigenesis, Genetic/drug effects , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Humans , MCF-7 Cells , Phenotype , Phosphoproteins/genetics , Phosphoproteins/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding/drug effects , Risk Factors , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Transcription, Genetic/drug effects , YY1 Transcription Factor/metabolism
17.
Hum Mol Genet ; 27(R2): R219-R227, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29726898

ABSTRACT

Enhancers are a class of regulatory elements essential for precise spatio-temporal control of gene expression during development and in terminally differentiated cells. This review highlights signature features of enhancer elements as well as new advances that provide mechanistic insights into enhancer-mediated gene control in the context of three-dimensional chromatin. We detail the various ways in which non-coding mutations can instigate aberrant gene control and cause a variety of Mendelian disorders, common diseases and cancer.


Subject(s)
Enhancer Elements, Genetic/genetics , Enhancer Elements, Genetic/physiology , Gene Expression Regulation/genetics , Animals , Disease/genetics , Humans , Regulatory Elements, Transcriptional/genetics , Transcription, Genetic/genetics
18.
Sci Rep ; 8(1): 7324, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743621

ABSTRACT

Long non-coding RNAs (lncRNAs) are frequently dysregulated in many human cancers. We sought to identify candidate oncogenic lncRNAs in human colon tumors by utilizing RNA sequencing data from 22 colon tumors and 22 adjacent normal colon samples from The Cancer Genome Atlas (TCGA). The analysis led to the identification of ~200 differentially expressed lncRNAs. Validation in an independent cohort of normal colon and patient-derived colon cancer cell lines identified a novel lncRNA, lincDUSP, as a potential candidate oncogene. Knockdown of lincDUSP in patient-derived colon tumor cell lines resulted in significantly decreased cell proliferation and clonogenic potential, and increased susceptibility to apoptosis. The knockdown of lincDUSP affects the expression of ~800 genes, and NCI pathway analysis showed enrichment of DNA damage response and cell cycle control pathways. Further, identification of lincDUSP chromatin occupancy sites by ChIRP-Seq demonstrated association with genes involved in the replication-associated DNA damage response and cell cycle control. Consistent with these findings, lincDUSP knockdown in colon tumor cell lines increased both the accumulation of cells in early S-phase and γH2AX foci formation, indicating increased DNA damage response induction. Taken together, these results demonstrate a key role of lincDUSP in the regulation of important pathways in colon cancer.


Subject(s)
Apoptosis/genetics , Cell Cycle/genetics , Colonic Neoplasms/pathology , RNA, Long Noncoding/genetics , Up-Regulation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Colonic Neoplasms/genetics , DNA Damage/genetics , Gene Knockdown Techniques , Genomics , Humans , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL