Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6660): eadg4521, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37410869

ABSTRACT

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.


Subject(s)
Cell Cycle Proteins , Gene Editing , Neoplasms , Oncogenes , Trisomy , Tumor Suppressor Protein p53 , Humans , Cell Cycle Proteins/genetics , Mutation , Neoplasms/genetics , Neoplasms/therapy , Proto-Oncogene Proteins/metabolism , Gene Editing/methods , Tumor Suppressor Protein p53/genetics , Carcinogenesis/genetics
2.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711674

ABSTRACT

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses TP53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, specific aneuploidies play essential roles in tumorigenesis, raising the possibility that targeting these "aneuploidy addictions" could represent a novel approach for cancer treatment.

3.
Proc Natl Acad Sci U S A ; 114(52): 13780-13785, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29255038

ABSTRACT

Several pathogenic Candida species are capable of heritable and reversible switching between two epigenetic states, "white" and "opaque." In Candida albicans, white cells are essentially sterile, whereas opaque cells are mating-proficient. Here, we interrogate the mechanism by which the white-opaque switch regulates sexual fecundity and identify four genes in the pheromone MAPK pathway that are expressed at significantly higher levels in opaque cells than in white cells. These genes encode the ß subunit of the G-protein complex (STE4), the pheromone MAPK scaffold (CST5), and the two terminal MAP kinases (CEK1/CEK2). To define the contribution of each factor to mating, C. albicans white cells were reverse-engineered to express elevated, opaque-like levels of these factors, either singly or in combination. We show that white cells co-overexpressing STE4, CST5, and CEK2 undergo mating four orders of magnitude more efficiently than control white cells and at a frequency approaching that of opaque cells. Moreover, engineered white cells recapitulate the transcriptional and morphological responses of opaque cells to pheromone. These results therefore reveal multiple bottlenecks in pheromone MAPK signaling in white cells and that alleviation of these bottlenecks enables efficient mating by these "sterile" cell types. Taken together, our findings establish that differential expression of several MAPK factors underlies the epigenetic control of mating in C. albicans We also discuss how fitness advantages could have driven the evolution of a toggle switch to regulate sexual reproduction in pathogenic Candida species.


Subject(s)
Candida albicans/metabolism , Epigenesis, Genetic/physiology , Gene Expression Regulation, Fungal/physiology , MAP Kinase Signaling System/physiology , Pheromones/metabolism , Candida albicans/genetics , Pheromones/genetics
4.
Mol Microbiol ; 105(5): 810-824, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28657681

ABSTRACT

Transcriptional regulation involves both positive and negative regulatory elements. The Dig1 negative regulators are part of a fungal-specific module that includes a transcription factor (a Ste12 family member) and a Dig1 family member. In Saccharomyces cerevisiae, the post-genome-duplication Dig1/Dig2 proteins regulate MAP kinase controlled signalling pathways involved in mating and filamentous growth. We have identified the single Dig1 orthologue in the fungal pathogen Candida albicans. Genetic studies and transcriptional profiling experiments show that this single protein is implicated in the regulation of MAP kinase-controlled processes involved in mating, filamentous growth and biofilm formation, and also influences cAMP-regulated processes. This suggests that the multiple cellular roles of the Dig1 protein are ancestral and predate the sub-functionalization apparent in S. cerevisiae after the genome duplication. Intriguingly, even though loss of Dig1 function in C. albicans enhances filamentous growth and biofilm formation, colonization of the murine gastrointestinal tract is reduced in the mutant. The complexity of the processes influenced by Dig1 in C. albicans, and the observation that Dig1 is one of the few regulatory proteins that were retained in the duplicated state after the whole genome duplication event in yeast, emphasizes the important role of these negative regulators in fungal transcriptional control.


Subject(s)
Candida albicans/genetics , Candida albicans/metabolism , Animals , Biofilms/growth & development , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Mice/microbiology , Mitogen-Activated Protein Kinases/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic/genetics
8.
Curr Opin Microbiol ; 26: 102-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26189047

ABSTRACT

The ability of microbial cells to exist in multiple states is a ubiquitous property that promotes adaptation and survival. This phenomenon has been extensively studied in the opportunistic pathogen Candida albicans, which can transition between multiple phenotypic states in response to environmental signals. C. albicans normally exists as a commensal in the human body, but can also cause debilitating mucosal infections or life-threatening systemic infections. The ability to switch between cellular forms contributes to C. albicans' capacity to infect different host niches, and strictly regulates the program of sexual mating. We review the unique properties associated with different phenotypic states, as well as how interactions between cells in different states can further augment microbial behavior.


Subject(s)
Adaptation, Physiological , Candida albicans/physiology , Host-Pathogen Interactions , Symbiosis , Animals , Candidiasis/microbiology , Candidiasis/pathology , Disease Models, Animal , Humans
9.
Nature ; 506(7488): 387-390, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24390351

ABSTRACT

Sexual reproduction is restricted to eukaryotic species and involves the fusion of haploid gametes to form a diploid cell that subsequently undergoes meiosis to generate recombinant haploid forms. This process has been extensively studied in the unicellular yeast Saccharomyces cerevisiae, which exhibits separate regulatory control over mating and meiosis. Here we address the mechanism of sexual reproduction in the related hemiascomycete species Candida lusitaniae. We demonstrate that, in contrast to S. cerevisiae, C. lusitaniae exhibits a highly integrated sexual program in which the programs regulating mating and meiosis have fused. Profiling of the C. lusitaniae sexual cycle revealed that gene expression patterns during mating and meiosis were overlapping, indicative of co-regulation. This was particularly evident for genes involved in pheromone MAPK signalling, which were highly induced throughout the sexual cycle of C. lusitaniae. Furthermore, genetic analysis showed that the orthologue of IME2, a 'diploid-specific' factor in S. cerevisiae, and STE12, the master regulator of S. cerevisiae mating, were each required for progression through both mating and meiosis in C. lusitaniae. Together, our results establish that sexual reproduction has undergone significant rewiring between S. cerevisiae and C. lusitaniae, and that a concerted sexual cycle operates in C. lusitaniae that is more reminiscent of the distantly related ascomycete, Schizosaccharomyces pombe. We discuss these results in light of the evolution of sexual reproduction in yeast, and propose that regulatory coupling of mating and meiosis has evolved multiple times as an adaptation to promote the haploid lifestyle.


Subject(s)
Biological Evolution , Candida/genetics , Candida/physiology , Haploidy , Meiosis/genetics , Meiosis/physiology , Candida/cytology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation/genetics , Genes, Essential/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Pheromones/metabolism , Protein Serine-Threonine Kinases/metabolism , Reproduction/genetics , Reproduction/physiology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/physiology , Sex , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...