Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Brain ; 147(3): 1043-1056, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37804316

ABSTRACT

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Subject(s)
Intellectual Disability , Optic Atrophy , Spinocerebellar Ataxias , Humans , Animals , Mice , Child , Spinocerebellar Ataxias/genetics , Muscle Spasticity , Peptide Hydrolases , ATPases Associated with Diverse Cellular Activities/genetics , ATP-Dependent Proteases/genetics , Mitochondrial Proteins , Metalloproteases
2.
Am J Med Genet A ; 194(5): e63510, 2024 May.
Article in English | MEDLINE | ID: mdl-38135344

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy classically characterized by early onset of severe neurologic injury with basal ganglia calcifications, white matter abnormalities, and progressive cerebral atrophy, along with lymphocytosis and raised interferon alpha (INFα) in the cerebrospinal fluid (CSF). Here, we report a 31/2 year-old patient born with prenatal onset AGS, first manifesting as intra-uterine growth retardation. Cranial ultrasonography and cerebral MRI revealed ventriculomegaly and periventricular and basal ganglia calcifications, along with cerebral atrophy. Perinatal infections and known metabolic disorders were excluded. Both CSF lymphocytosis and raised INFα were present. Molecular analysis disclosed two already described compound heterozygous pathogenic variants in TREX1 (c. 309dup, p.(Thr104Hisfs*53) and c. 506G > A, p.(Arg169His)). The evolution was marked by severe global developmental delay with progressive microcephaly. Promptly, the patient developed irritability, quadri-paretic dyskinetic movements, and subsequently tonic seizures. Sensorineural hearing loss was detected as well as glaucoma. Initially, he was symptomatically treated with trihexyphenidyl followed by levetiracetam and topiramate. At age 22 months, baricitinib (0.4 mg/kg/day) was introduced, leading to normal serum INFα levels. Clinically, dyskinetic movements significantly decreased as well as irritability and sleep disturbance. We confirmed that baricitinib was a useful treatment with no major side effect.


Subject(s)
Autoimmune Diseases of the Nervous System , Azetidines , Basal Ganglia Diseases , Calcinosis , Janus Kinase Inhibitors , Lymphocytosis , Nervous System Malformations , Purines , Pyrazoles , Sulfonamides , Male , Pregnancy , Female , Humans , Infant , Lymphocytosis/cerebrospinal fluid , Lymphocytosis/genetics , Nervous System Malformations/drug therapy , Nervous System Malformations/genetics , Basal Ganglia Diseases/diagnosis , Basal Ganglia Diseases/drug therapy , Basal Ganglia Diseases/genetics , Autoimmune Diseases of the Nervous System/drug therapy , Autoimmune Diseases of the Nervous System/genetics , Calcinosis/genetics , Atrophy
3.
Mol Genet Metab ; 140(3): 107681, 2023 11.
Article in English | MEDLINE | ID: mdl-37604084

ABSTRACT

In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.


Subject(s)
Cognitive Dysfunction , Homocystinuria , Macular Degeneration , Vitamin B 12 Deficiency , Child, Preschool , Humans , Infant , Male , Cognitive Dysfunction/drug therapy , Homocystinuria/drug therapy , Homocystinuria/genetics , Hydroxocobalamin/therapeutic use , Macular Degeneration/drug therapy , Mammals , Oxidoreductases , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/drug therapy
4.
Genet Med ; 24(12): 2475-2486, 2022 12.
Article in English | MEDLINE | ID: mdl-36197437

ABSTRACT

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Subject(s)
Autism Spectrum Disorder , Ectodermal Dysplasia , Neurodevelopmental Disorders , Humans , Scalp/abnormalities , Scalp/metabolism , Autism Spectrum Disorder/genetics , HEK293 Cells , Transcription Factor AP-1/genetics , Exons/genetics , Ectodermal Dysplasia/genetics , Neurodevelopmental Disorders/genetics , RNA, Messenger , Fos-Related Antigen-2/genetics
5.
BMJ Case Rep ; 15(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922085

ABSTRACT

Adrenal insufficiency (AI) in a newborn due to hypothalamic-pituitary-adrenal (HPA) axis suppression after maternal glucocorticoid therapy during pregnancy is a rare condition. We report an AI triggered by a nosocomial infection in a premature newborn. The suspected mechanism was the suppression of the HPA axis due to high doses of maternal glucocorticoid treatment during pregnancy. AI was revealed by recurrent hypoglycaemia and mild hyponatraemia during the neonatal period. His twin brother did not develop AI, showing the variable sensitivity of adrenal suppression after exposure to the same glucocorticoid dose. The affected boy was substituted with hydrocortisone until the age of 2 years. At this age, basal morning values for cortisol and Adrenocorticotropic hormone (ACTH) had normalised. The patient also suffers from galactosaemia. We suggest screening for AI, by testing for hypoglycaemia and hyponatraemia, in newborns who were exposed to high doses of maternal methylprednisolone treatment during the pregnancy and to include galactosaemia in national neonatal screening programmes.


Subject(s)
Adrenal Insufficiency , Galactosemias , Hypoglycemia , Hyponatremia , Infant, Premature, Diseases , Adrenal Insufficiency/chemically induced , Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/drug therapy , Child, Preschool , Galactosemias/drug therapy , Glucocorticoids/therapeutic use , Humans , Hydrocortisone , Hypoglycemia/chemically induced , Hypoglycemia/drug therapy , Hyponatremia/drug therapy , Hypothalamo-Hypophyseal System , Infant , Infant, Newborn , Infant, Premature, Diseases/drug therapy , Male , Pituitary-Adrenal System
6.
Genet Med ; 24(9): 1941-1951, 2022 09.
Article in English | MEDLINE | ID: mdl-35678782

ABSTRACT

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Subject(s)
Mental Retardation, X-Linked , Protein Serine-Threonine Kinases , Symporters , Brain/abnormalities , Catalytic Domain/genetics , Hemizygote , Humans , Loss of Function Mutation , Male , Maternal Inheritance/genetics , Mental Retardation, X-Linked/genetics , Mutation, Missense , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Symporters/metabolism
7.
Front Mol Neurosci ; 15: 886729, 2022.
Article in English | MEDLINE | ID: mdl-35571374

ABSTRACT

Glycine receptors (GlyRs) containing the α2 subunit govern cell fate, neuronal migration and synaptogenesis in the developing cortex and spinal cord. Rare missense variants and microdeletions in the X-linked GlyR α2 subunit gene (GLRA2) have been associated with human autism spectrum disorder (ASD), where they typically cause a loss-of-function via protein truncation, reduced cell-surface trafficking and/or reduced glycine sensitivity (e.g., GLRA2Δex8-9 and extracellular domain variants p.N109S and p.R126Q). However, the GlyR α2 missense variant p.R323L in the intracellular M3-M4 domain results in a gain-of-function characterized by slower synaptic decay times, longer duration active periods and increases in channel conductance. This study reports the functional characterization of four missense variants in GLRA2 associated with ASD or developmental disorders (p.V-22L, p.N38K, p.K213E, p.T269M) using a combination of bioinformatics, molecular dynamics simulations, cellular models of GlyR trafficking and electrophysiology in artificial synapses. The GlyR α2V-22L variant resulted in altered predicted signal peptide cleavage and a reduction in cell-surface expression, suggestive of a partial loss-of-function. Similarly, GlyR α2N38K homomers showed reduced cell-surface expression, a reduced affinity for glycine and a reduced magnitude of IPSCs in artificial synapses. By contrast, GlyR α2K213E homomers showed a slight reduction in cell-surface expression, but IPSCs were larger, with faster rise/decay times, suggesting a gain-of-function. Lastly, GlyR α2T269M homomers exhibited a high glycine sensitivity accompanied by a substantial leak current, suggestive of an altered function that could dramatically enhance glycinergic signaling. These results may explain the heterogeneity of clinical phenotypes associated with GLRA2 mutations and reveal that missense variants can result in a loss, gain or alteration of GlyR α2 function. In turn, these GlyR α2 missense variants are likely to either negatively or positively deregulate cortical progenitor homeostasis and neuronal migration in the developing brain, leading to changes in cognition, learning, and memory.

8.
Clin Genet ; 102(2): 117-122, 2022 08.
Article in English | MEDLINE | ID: mdl-35470444

ABSTRACT

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Subject(s)
De Lange Syndrome , Nuclear Proteins , Cell Cycle Proteins/genetics , Child , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Female , Genomics , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Pregnancy , Transcription Factors/genetics
9.
Epilepsy Behav ; 126: 108471, 2022 01.
Article in English | MEDLINE | ID: mdl-34915430

ABSTRACT

AIM: KCNB1 encephalopathy encompasses a broad phenotypic spectrum associating intellectual disability, behavioral disturbances, and epilepsies of various severity. Using standardized parental questionnaires, we aimed to capture the heterogeneity of the adaptive and behavioral features in a series of patients with KCNB1 pathogenic variants. METHODS: We included 25 patients with a KCNB1 encephalopathy, aged from 3.2 to 34.1 years (median = 10 years). Adaptive functioning was assessed in all patients using the French version of the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) questionnaire. We screened global behavior with the Childhood Behavioral Check-List (CBCL, Achenbach) and autism spectrum disorder (ASD) with the Social Communication Questionnaire (SCQ). We used a cluster analysis to identify subgroups of adaptive profiles. RESULTS: VABS-II questionnaire showed pathological adaptive behavior in all participants with a severity of adaptive deficiency ranging from mild in 8/20 to severe in 7/20. Eight out of 16 were at risk of Attention Problems at the CBCL and 13/18 were at risk of autism spectrum disorder (ASD). The adaptive behavior composite score significantly decreased with age (Spearman's Rho=-0.72, p<0.001) but not the equivalent ages, suggesting stagnation and slowing but no regression over time. The clustering analysis identified two subgroups of patients, one showing more severe adaptive behavior. The severity of the epilepsy phenotype predicted the severity of the behavioral profile with a sensitivity of 70% and a specificity of 90.9%. CONCLUSION: This study confirms the deleterious consequences of early-onset epilepsy in addition to the impact of the gene dysfunction in patients with KCNB1 encephalopathy. ASD and attention disorders are frequent. Parental questionnaires should be considered as useful tools for early screening and care adaptation.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , Epilepsy , Intellectual Disability , Adaptation, Psychological , Adolescent , Adult , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Brain Diseases/complications , Brain Diseases/epidemiology , Brain Diseases/genetics , Child , Child, Preschool , Epilepsy/genetics , Humans , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Intellectual Disability/psychology , Shab Potassium Channels/genetics , Young Adult
10.
Genet Med ; 23(7): 1202-1210, 2021 07.
Article in English | MEDLINE | ID: mdl-33674768

ABSTRACT

PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1.


Subject(s)
Histone Demethylases/genetics , Intellectual Disability , Sex Characteristics , Abnormalities, Multiple , DNA-Binding Proteins/genetics , Face/abnormalities , Female , Genetic Association Studies , Hematologic Diseases , Humans , Infant, Newborn , Intellectual Disability/genetics , Male , Neoplasm Proteins/genetics , Phenotype , Vestibular Diseases
11.
J Med Genet ; 58(10): 712-716, 2021 10.
Article in English | MEDLINE | ID: mdl-32820033

ABSTRACT

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Motor Skills Disorders/diagnosis , Motor Skills Disorders/genetics , Mutation, Missense , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Nucleocytoplasmic Transport Proteins/genetics , Alleles , Amino Acid Substitution , Cohort Studies , Genetic Predisposition to Disease , Genotype , Humans , Phenotype
12.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Article in English | MEDLINE | ID: mdl-32954514

ABSTRACT

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Subject(s)
Brain Diseases/diagnostic imaging , Brain Diseases/genetics , Epilepsy/diagnostic imaging , Epilepsy/genetics , Genetic Variation/genetics , Shab Potassium Channels/genetics , Adolescent , Adult , Brain Diseases/physiopathology , Child , Child, Preschool , Cohort Studies , Electroencephalography/trends , Epilepsy/physiopathology , Female , Humans , Infant , Male , Retrospective Studies , Time Factors , Treatment Outcome , Young Adult
13.
Hum Mutat ; 41(1): 69-80, 2020 01.
Article in English | MEDLINE | ID: mdl-31513310

ABSTRACT

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Shab Potassium Channels/genetics , Alleles , Genetic Association Studies/methods , Genotype , Humans , Phenotype , Shab Potassium Channels/chemistry , Shab Potassium Channels/metabolism , Structure-Activity Relationship
14.
JIMD Rep ; 49(1): 70-79, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31497484

ABSTRACT

Intracellular cobalamin metabolism (ICM) defects can be present as autosomal recessive or X-linked disorders. Parenteral hydroxocobalamin (P-OHCbl) is the mainstay of therapy, but the optimal dose has not been determined. Despite early treatment, long-term complications may develop. We have analyzed the biochemical and clinical responses in five patients with early onset of different types of ICM defects (cblC: patients 1-3; cblA: patient 4; cblX: patient 5) following daily P-OHCbl dose intensification (DI). In patient 4, P-OHCbl was started at age 10 years and in patient 5 at age 5 years. OHCbl was formulated at either, 5, 25, or 50 mg/mL. P-OHCbl was intravenously or subcutaneously (SQ) delivered, subsequently by placement of a SQ injection port except in patient 4. In all patients, homocysteine and methylmalonic acid levels, demonstrated an excellent response to various P-OHCbl doses. After age 36 months, patients 1-3 had a close to normal neurological examination with lower range developmental quotient. In patient 3, moderate visual impairment was present. Patient 4, at age 10 years, had normal renal, visual and cognitive function. In cblX patient 5, epilepsy was better controlled. In conclusion, P-OHCbl-DI caused an excellent control of metabolites in all patients. In the three cblC patients, comparison with patients, usually harboring identical genotype and similar metabolic profile, was suggestive of a positive effect, in favor of clinical efficacy. With P-OHCbl-DI, CblA patient has been placed into a lower risk to develop renal and optic impairment. In cblX patient, lower P-OHCbl doses were administrated to improve tolerability.

15.
Nat Neurosci ; 22(9): 1533, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31222187

ABSTRACT

In the version of this article initially published, the Acknowledgements erroneously included a grant number that did not directly support the work in the article. The last sentence of the Acknowledgments should have read, "The authors' laboratories were supported by National Natural Science Foundation of China grants 31671222 and 31571556 (G.D.), a Taishan Scholarship (X.H.), the American Diabetes Association (ADA1-17-PDF-138) (Y.H.), the US Department of Agriculture (USDA) Cris6250-51000-059-04S (Y.X.), National Institutes of Health grants R01DK101379, R01DK117281, P01DK113954, R01DK115761 (Y.X.), the American Heart Association grant AHA30970064 (Z.S.), and grants R21CA215591 and R01ES027544 (Z.S.)." The error has been corrected in the HTML and PDF versions of the article.

16.
Nat Neurosci ; 22(2): 205-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30664766

ABSTRACT

Nuclear receptor corepressor 1 (NCOR1) and NCOR2 (also known as SMRT) regulate gene expression by activating histone deacetylase 3 through their deacetylase activation domain (DAD). We show that mice with DAD knock-in mutations have memory deficits, reduced anxiety levels, and reduced social interactions. Mice with NCOR1 and NORC2 depletion specifically in GABAergic neurons (NS-V mice) recapitulated the memory deficits and had reduced GABAA receptor subunit α2 (GABRA2) expression in lateral hypothalamus GABAergic (LHGABA) neurons. This was associated with LHGABA neuron hyperexcitability and impaired hippocampal long-term potentiation, through a monosynaptic LHGABA to CA3GABA projection. Optogenetic activation of this projection caused memory deficits, whereas targeted manipulation of LHGABA or CA3GABA neuron activity reversed memory deficits in NS-V mice. We describe de novo variants in NCOR1, NCOR2 or HDAC3 in patients with intellectual disability or neurodevelopmental disorders. These findings identify a hypothalamus-hippocampus projection that may link endocrine signals with synaptic plasticity through NCOR-mediated regulation of GABA signaling.


Subject(s)
CA3 Region, Hippocampal/metabolism , GABAergic Neurons/metabolism , Hypothalamus/metabolism , Memory Disorders/genetics , Memory/physiology , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 2/genetics , Animals , Databases, Factual , Excitatory Postsynaptic Potentials/genetics , Intellectual Disability/genetics , Intellectual Disability/metabolism , Memory Disorders/metabolism , Mice , Mice, Transgenic , Neural Pathways/metabolism , Neuronal Plasticity/physiology , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 2/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism
17.
Eur J Hum Genet ; 26(8): 1132-1142, 2018 08.
Article in English | MEDLINE | ID: mdl-29706637

ABSTRACT

Tubulinopathies are a heterogeneous group of conditions with a wide spectrum of clinical severity resulting from variants in genes of the tubulin superfamily. Variants in TUBG1 have been described in three patients with posterior predominant pachygyria and microcephaly. We here report eight additional patients with four novel heterozygous variants in TUBG1 identified by next-generation sequencing (NGS) analysis. All had severe motor and cognitive impairment and all except one developed seizures in early life. The core imaging features included a pachygyric cortex with posterior to anterior gradient, enlarged lateral ventricles most pronounced over the posterior horns, and variable degrees of reduced white matter volume. Basal ganglia, corpus callosum, brainstem, and cerebellum were often normal, in contrast to patients with variants in other tubulin genes where these structures are frequently malformed. The imaging phenotype associated with variants in TUBG1 is therefore more in line with the phenotype resulting from variants in LIS1 (a.k.a. PAFAH1B1). This difference may, at least in part, be explained by gamma-tubulin's physiological function in microtubule nucleation, which differs from that of alpha and beta-tubulin.


Subject(s)
Cognitive Dysfunction/genetics , Lissencephaly/genetics , Microcephaly/genetics , Mutation, Missense , Phenotype , Tubulin/genetics , Adolescent , Adult , Brain/diagnostic imaging , Child , Cognitive Dysfunction/pathology , Female , Heterozygote , Humans , Lissencephaly/pathology , Male , Microcephaly/pathology , Syndrome , Tubulin/chemistry
18.
Hum Mutat ; 39(8): 1076-1080, 2018 08.
Article in English | MEDLINE | ID: mdl-29782060

ABSTRACT

We describe progressive spastic paraparesis in two male siblings and the daughter of one of these individuals. Onset of disease occurred within the first decade, with stiffness and gait difficulties. Brisk deep tendon reflexes and extensor plantar responses were present, in the absence of intellectual disability or dermatological manifestations. Cerebral imaging identified intracranial calcification in all symptomatic family members. A marked upregulation of interferon-stimulated gene transcripts was recorded in all three affected individuals and in two clinically unaffected relatives. A heterozygous IFIH1 c.2544T>G missense variant (p.Asp848Glu) segregated with interferon status. Although not highly conserved (CADD score 10.08 vs. MSC-CADD score of 19.33) and predicted as benign by in silico algorithms, this variant is not present on publically available databases of control alleles, and expression of the D848E construct in HEK293T cells indicated that it confers a gain-of-function. This report illustrates, for the first time, the occurrence of autosomal-dominant spastic paraplegia with intracranial calcifications due to an IFIH1-related type 1 interferonopathy.


Subject(s)
Interferon-Induced Helicase, IFIH1/genetics , Paraparesis, Spastic/genetics , Algorithms , Brain Diseases/genetics , Calcinosis/genetics , Female , Gain of Function Mutation/genetics , HEK293 Cells , Heterozygote , Humans , Male , Mutation, Missense/genetics , Pedigree
19.
Pediatr Neurol ; 71: 65-69, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28363510

ABSTRACT

BACKGROUND: Autosomal recessive or X-linked inborn errors of intracellular cobalamin metabolism can lead to methylmalonic aciduria and homocystinuria. In neonates, both increased cerebrospinal fluid glycine and cerebrospinal fluid/plasma glycine ratio are biochemical features of nonketotic hyperglycinemia. METHODS: We describe a boy presenting in the neonatal period with hypotonia, tonic, clonic, and later myoclonic seizures, subsequently evolving into refractory epilepsy and severe neurocognitive impairment. RESULTS: Increased cerebrospinal fluid glycine and cerebrospinal fluid to plasma glycine ratio were indicative of nonketotic hyperglycinemia. Early magnetic resonance imaging showed restricted diffusion and decreased apparent diffusion coefficient values in posterior limb of internal capsules and later in entire internal capsules and posterior white matter. Sequencing did not show a mutation in AMT, GLDC, or GCSH. Biochemical analysis identified persistently increased cerebrospinal fluid levels of glycine and methylmalonic acid and increased urinary methylmalonic acid and plasma homocysteine levels, which improved on higher parenteral hydroxocobalamin dose. Exome sequencing identified a known pathogenic sequence variant in X-linked cobalamin (HCFC1), c.344C>T, p. Ala115Val. In addition, a hemizygous mutation was found in the ATRX (c. 2728A>G, p. Lys910Glu). Retrospective review of two other patients with X-linked cobalamin deficiency also identified increased cerebrospinal fluid glycine levels. CONCLUSIONS: This boy had X-linked cobalamin deficiency (HCFC1) with increased cerebrospinal fluid glycine and methylmalonic acid and increased cerebrospinal fluid to plasma glycine ratio suggesting a brain hyperglycinemia. Putative binding sites for HCFC1 and its binding partner THAP11 were identified near genes of the glycine cleavage enzyme, providing a potential mechanistic link between HCFC1 mutations and increased glycine.


Subject(s)
Genetic Diseases, X-Linked/cerebrospinal fluid , Glycine/cerebrospinal fluid , Hyperglycinemia, Nonketotic/diagnosis , Methylmalonic Acid/cerebrospinal fluid , Vitamin B 12 Deficiency/cerebrospinal fluid , Vitamin B 12 Deficiency/diagnosis , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Biomarkers/urine , Brain/diagnostic imaging , Diagnosis, Differential , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , Glycine/blood , Humans , Infant, Newborn , Male , Vitamin B 12 Deficiency/drug therapy , Vitamin B 12 Deficiency/genetics
20.
EMBO Mol Med ; 9(1): 96-111, 2017 01.
Article in English | MEDLINE | ID: mdl-27856618

ABSTRACT

Coenzyme Q (CoQ) is an electron acceptor for sulfide-quinone reductase (SQR), the first enzyme of the hydrogen sulfide oxidation pathway. Here, we show that lack of CoQ in human skin fibroblasts causes impairment of hydrogen sulfide oxidation, proportional to the residual levels of CoQ. Biochemical and molecular abnormalities are rescued by CoQ supplementation in vitro and recapitulated by pharmacological inhibition of CoQ biosynthesis in skin fibroblasts and ADCK3 depletion in HeLa cells. Kidneys of Pdss2kd/kd mice, which only have ~15% residual CoQ concentrations and are clinically affected, showed (i) reduced protein levels of SQR and downstream enzymes, (ii) accumulation of hydrogen sulfides, and (iii) glutathione depletion. These abnormalities were not present in brain, which maintains ~30% residual CoQ and is clinically unaffected. In Pdss2kd/kd mice, we also observed low levels of plasma and urine thiosulfate and increased blood C4-C6 acylcarnitines. We propose that impairment of the sulfide oxidation pathway induced by decreased levels of CoQ causes accumulation of sulfides and consequent inhibition of short-chain acyl-CoA dehydrogenase and glutathione depletion, which contributes to increased oxidative stress and kidney failure.


Subject(s)
Ataxia/physiopathology , Mitochondrial Diseases/physiopathology , Muscle Weakness/physiopathology , Sulfides/metabolism , Ubiquinone/deficiency , Alkyl and Aryl Transferases/deficiency , Animals , Cells, Cultured , Fibroblasts/metabolism , Humans , Mice , Mice, Knockout , Oxidation-Reduction , Quinone Reductases/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...