Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Trends Mol Med ; 2024 04 26.
Article in English | MEDLINE | ID: mdl-38677980

ABSTRACT

Population differences in cardiometabolic disease remain unexplained. Misleading assumptions over genetic explanations are partly due to terminology used to distinguish populations, specifically ancestry, race, and ethnicity. These terms differentially implicate environmental and biological causal pathways, which should inform their use. Genetic variation alone accounts for a limited fraction of population differences in cardiometabolic disease. Research effort should focus on societally driven, lifelong environmental determinants of population differences in disease. Rather than pursuing population stratifiers to personalize medicine, we advocate removing socioeconomic barriers to receipt of and adherence to healthcare interventions, which will have markedly greater impact on improving cardiometabolic outcomes. This requires multidisciplinary collaboration and public and policymaker engagement to address inequalities driven by society rather than biology per se.

2.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36621005

ABSTRACT

Gene duplication events can drive evolution by providing genetic material for new gene functions, and they create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and naïve-state pluripotent stem cells. Sequence analysis and epitope-tagging revealed that NANOGP1 is protein coding with an intact homeobox domain. The duplication that created NANOGP1 occurred earlier in primate evolution than previously thought and has been retained only in great apes, whereas Old World monkeys have disabled the gene in different ways, including homeodomain point mutations. NANOGP1 is a strong inducer of naïve pluripotency; however, unlike NANOG, it is not required to maintain the undifferentiated status of human naïve pluripotent cells. By retaining expression, sequence and partial functional conservation with its ancestral copy, NANOGP1 exemplifies how gene duplication and subfunctionalisation can contribute to transcription factor activity in human pluripotency and development.


Subject(s)
Genes, Homeobox , Pluripotent Stem Cells , Animals , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
J Anthropol Sci ; 99: 179-182, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34601463
4.
PLoS Genet ; 17(3): e1009221, 2021 03.
Article in English | MEDLINE | ID: mdl-33651813

ABSTRACT

Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes' genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons.


Subject(s)
DNA Replication , Genome , Hominidae/genetics , Markov Chains , Models, Genetic , Templates, Genetic , Algorithms , Animals , Genomics/methods , Humans , Poly A-U , Quantitative Trait Loci
5.
6.
Science ; 367(6484)2020 03 20.
Article in English | MEDLINE | ID: mdl-32193295

ABSTRACT

Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.


Subject(s)
Genetic Variation , Genetics, Population , Genome, Human , Whole Genome Sequencing , Africa , Americas , Animals , Asia , DNA Copy Number Variations , Haplotypes , Hominidae/genetics , Humans , INDEL Mutation , Neanderthals/genetics , Oceania , Phylogeny , Polymorphism, Single Nucleotide , Population Density , Racial Groups/genetics
7.
Genome Biol ; 19(1): 193, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30428903

ABSTRACT

BACKGROUND: Integrating demography and adaptive evolution is pivotal to understanding the evolutionary history and conservation of great apes. However, little is known about the adaptive evolution of our closest relatives, in particular if and to what extent adaptions to environmental differences have occurred. Here, we used whole-genome sequencing data from critically endangered orangutans from North Sumatra (Pongo abelii) and Borneo (P. pygmaeus) to investigate adaptive responses of each species to environmental differences during the Pleistocene. RESULTS: Taking into account the markedly disparate demographic histories of each species after their split ~ 1 Ma ago, we show that persistent environmental differences on each island had a strong impact on the adaptive evolution of the genus Pongo. Across a range of tests for positive selection, we find a consistent pattern of between-island and species differences. In the more productive Sumatran environment, the most notable signals of positive selection involve genes linked to brain and neuronal development, learning, and glucose metabolism. On Borneo, however, positive selection comprised genes involved in lipid metabolism, as well as cardiac and muscle activities. CONCLUSIONS: We find strikingly different sets of genes appearing to have evolved under strong positive selection in each species. In Sumatran orangutans, selection patterns were congruent with well-documented cognitive and behavioral differences between the species, such as a larger and more complex cultural repertoire and higher degrees of sociality. However, in Bornean orangutans, selective responses to fluctuating environmental conditions appear to have produced physiological adaptations to generally lower and temporally more unpredictable food supplies.


Subject(s)
Adaptation, Biological , Biological Evolution , Genetic Variation , Genetics, Population , Genome , Pongo/genetics , Animals , Genetic Speciation , Phylogeny , Pongo/classification
8.
PLoS Genet ; 14(9): e1007641, 2018 09.
Article in English | MEDLINE | ID: mdl-30226838

ABSTRACT

Human populations outside of Africa have experienced at least two bouts of introgression from archaic humans, from Neanderthals and Denisovans. In Papuans there is prior evidence of both these introgressions. Here we present a new approach to detect segments of individual genomes of archaic origin without using an archaic reference genome. The approach is based on a hidden Markov model that identifies genomic regions with a high density of single nucleotide variants (SNVs) not seen in unadmixed populations. We show using simulations that this provides a powerful approach to identifying segments of archaic introgression with a low rate of false detection, given data from a suitable outgroup population is available, without the archaic introgression but containing a majority of the variation that arose since initial separation from the archaic lineage. Furthermore our approach is able to infer admixture proportions and the times both of admixture and of initial divergence between the human and archaic populations. We apply the model to detect archaic introgression in 89 Papuans and show how the identified segments can be assigned to likely Neanderthal or Denisovan origin. We report more Denisovan admixture than previous studies and find a shift in size distribution of fragments of Neanderthal and Denisovan origin that is compatible with a difference in admixture time. Furthermore, we identify small amounts of Denisova ancestry in South East Asians and South Asians.


Subject(s)
Genome, Human/genetics , Hominidae/genetics , Hybridization, Genetic/genetics , Neanderthals/genetics , Animals , Asian People/genetics , Black People/genetics , Fossils , Humans , Native Hawaiian or Other Pacific Islander/genetics , Phylogeny , White People/genetics
9.
Nature ; 559(7714): 336-338, 2018 07.
Article in English | MEDLINE | ID: mdl-30006623
10.
Trends Ecol Evol ; 33(8): 582-594, 2018 08.
Article in English | MEDLINE | ID: mdl-30007846

ABSTRACT

We challenge the view that our species, Homo sapiens, evolved within a single population and/or region of Africa. The chronology and physical diversity of Pleistocene human fossils suggest that morphologically varied populations pertaining to the H. sapiens clade lived throughout Africa. Similarly, the African archaeological record demonstrates the polycentric origin and persistence of regionally distinct Pleistocene material culture in a variety of paleoecological settings. Genetic studies also indicate that present-day population structure within Africa extends to deep times, paralleling a paleoenvironmental record of shifting and fractured habitable zones. We argue that these fields support an emerging view of a highly structured African prehistory that should be considered in human evolutionary inferences, prompting new interpretations, questions, and interdisciplinary research directions.


Subject(s)
Biological Evolution , Hominidae/classification , Africa , Animals , Archaeology , Ecosystem , Fossils , Genetics, Population , Geography , Hominidae/anatomy & histology , Hominidae/genetics , Humans
11.
Science ; 360(6392): 1024-1027, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29853687

ABSTRACT

Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets. A contribution from both of these ancestral populations is found in all modern Central and South Americans. The proportions of these two ancestries in ancient and modern populations are consistent with a coastal dispersal and multiple admixture events.


Subject(s)
Biological Evolution , Emigration and Immigration , Genome, Human , Population/genetics , California , Humans , Ontario
12.
Curr Biol ; 27(22): 3487-3498.e10, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29103940

ABSTRACT

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.


Subject(s)
Genetic Speciation , Pongo/genetics , Animals , Behavior, Animal/physiology , Biological Evolution , Endangered Species , Gene Flow/genetics , Genetic Variation , Genome , Genomics , Hominidae/genetics , Metagenomics/methods , Phylogeny , Pongo/classification , Pongo/physiology , Pongo abelii/genetics , Pongo pygmaeus/genetics
14.
Nat Commun ; 8(1): 303, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827725

ABSTRACT

Heterozygous mutations within homozygous sequences descended from a recent common ancestor offer a way to ascertain de novo mutations across multiple generations. Using exome sequences from 3222 British-Pakistani individuals with high parental relatedness, we estimate a mutation rate of 1.45 ± 0.05 × 10-8 per base pair per generation in autosomal coding sequence, with a corresponding non-crossover gene conversion rate of 8.75 ± 0.05 × 10-6 per base pair per generation. This is at the lower end of exome mutation rates previously estimated in parent-offspring trios, suggesting that post-zygotic mutations contribute little to the human germ-line mutation rate. We find frequent recurrence of mutations at polymorphic CpG sites, and an increase in C to T mutations in a 5' CCG 3' to 5' CTG 3' context in the Pakistani population compared to Europeans, suggesting that mutational processes have evolved rapidly between human populations.Estimates of human mutation rates differ substantially based on the approach. Here, the authors present a multi-generational estimate from the autozygous segment in a non-European population that gives insight into the contribution of post-zygotic mutations and population-specific mutational processes.


Subject(s)
Genetics, Population/methods , Genome, Human/genetics , Mutation Rate , Mutation , Exome/genetics , Germ-Line Mutation , Heterozygote , Homozygote , Humans , Polymorphism, Genetic
15.
Elife ; 62017 05 17.
Article in English | MEDLINE | ID: mdl-28513430

ABSTRACT

An analysis of worldwide human genetic variation reveals the footprints of ancient changes in genomic mutation processes.


Subject(s)
Hominidae/genetics , Animals , DNA Mutational Analysis , Genomics , Humans , Mutation
16.
PLoS Genet ; 13(1): e1006549, 2017 01.
Article in English | MEDLINE | ID: mdl-28095480

ABSTRACT

The rate of germline mutation varies widely between species but little is known about the extent of variation in the germline mutation rate between individuals of the same species. Here we demonstrate that an allele that increases the rate of germline mutation can result in a distinctive signature in the genomic region linked to the affected locus, characterized by a number of haplotypes with a locally high proportion of derived alleles, against a background of haplotypes carrying a typical proportion of derived alleles. We searched for this signature in human haplotype data from phase 3 of the 1000 Genomes Project and report a number of candidate mutator loci, several of which are located close to or within genes involved in DNA repair or the DNA damage response. To investigate whether mutator alleles remained active at any of these loci, we used de novo mutation counts from human parent-offspring trios in the 1000 Genomes and Genome of the Netherlands cohorts, looking for an elevated number of de novo mutations in the offspring of parents carrying a candidate mutator haplotype at each of these loci. We found some support for two of the candidate loci, including one locus just upstream of the BRSK2 gene, which is expressed in the testis and has been reported to be involved in the response to DNA damage.


Subject(s)
Gene Frequency , Genome, Human , Germ-Line Mutation/genetics , Haplotypes , DNA Repair/genetics , Genetic Loci , Humans , Mutation Rate , Pedigree , Protein Serine-Threonine Kinases/genetics
17.
Science ; 354(6311): 477-481, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27789843

ABSTRACT

Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.


Subject(s)
Evolution, Molecular , Genetic Variation , Pan paniscus/genetics , Pan troglodytes/genetics , Animals , Cameroon , Gene Flow , Genome , Genomics , Haplotypes , Nigeria , Population
18.
Curr Opin Genet Dev ; 41: 36-43, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27589081

ABSTRACT

The germline mutation rate has long been a major source of uncertainty in human evolutionary and demographic analyses based on genetic data, but estimates have improved substantially in recent years. I discuss our current knowledge of the mutation rate in humans and the underlying biological factors affecting it, which include generation time, parental age and other developmental and reproductive timescales. There is good evidence for a slowdown in mean mutation rate during great ape evolution, but not for a more recent change within the timescale of human genetic diversity. Hence, pending evidence to the contrary, it is reasonable to use a present-day rate of approximately 0.5×10-9bp-1year-1 in all human or hominin demographic analyses.


Subject(s)
Evolution, Molecular , Genetic Variation , Germ-Line Mutation/genetics , Hominidae/genetics , Animals , Demography , Humans , Mutation Rate
19.
Article in English | MEDLINE | ID: mdl-27325834

ABSTRACT

Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which 'dark' gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.


Subject(s)
Biological Evolution , Germ-Line Mutation , Mutation Rate , Evolution, Molecular , Humans , Male , Models, Genetic
20.
Bioinformatics ; 32(11): 1749-51, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26826718

ABSTRACT

UNLABELLED: Runs of homozygosity (RoHs) are genomic stretches of a diploid genome that show identical alleles on both chromosomes. Longer RoHs are unlikely to have arisen by chance but are likely to denote autozygosity, whereby both copies of the genome descend from the same recent ancestor. Early tools to detect RoH used genotype array data, but substantially more information is available from sequencing data. Here, we present and evaluate BCFtools/RoH, an extension to the BCFtools software package, that detects regions of autozygosity in sequencing data, in particular exome data, using a hidden Markov model. By applying it to simulated data and real data from the 1000 Genomes Project we estimate its accuracy and show that it has higher sensitivity and specificity than existing methods under a range of sequencing error rates and levels of autozygosity. AVAILABILITY AND IMPLEMENTATION: BCFtools/RoH and its associated binary/source files are freely available from https://github.com/samtools/BCFtools CONTACT: vn2@sanger.ac.uk or pd3@sanger.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Exome , Genomics , Genotype , Homozygote , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...