Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J C Part Fields ; 78(6): 505, 2018.
Article in English | MEDLINE | ID: mdl-30956555

ABSTRACT

Inelastic nuclear interaction probability of 400 GeV/c protons interacting with bent silicon crystals was investigated, in particular for both types of crystals installed at the CERN Large Hadron Collider for beam collimation purposes. In comparison to amorphous scattering interaction, in planar channeling this probability is ∼ 36 % for the quasi-mosaic type (planes (111)), and ∼ 27 % for the strip type (planes (110)). Moreover, the absolute inelastic nuclear interaction probability in the axial channeling orientation, along the ⟨ 110 ⟩ axis, was estimated for the first time, finding a value of 0.6 % for a crystal 2 mm long along the beam direction, with a bending angle of 55 µ rad. This value is more than two times lower with respect to the planar channeling orientation of the same crystal, and increases with the vertical angular misalignment. Finally, the correlation between the inelastic nuclear interaction probability in the planar channeling and the silicon crystal curvature is reported.

2.
Phys Rev Lett ; 102(8): 084801, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19257744

ABSTRACT

The interactions of 400 GeV protons with different sequences of bent silicon crystals have been investigated at the H8 beam line of the CERN Super Proton Synchrotron. The multiple volume reflection of the proton beam has been studied in detail on a five-crystal reflector measuring an angular beam deflection theta = 52.96 +/- 0.14 microrad. The efficiency was found larger than 80% for an angular acceptance at the reflector entrance of 70 microrad, with a maximal efficiency value of epsilon = 0.90 +/- 0.01 +/- 0.03.

3.
Phys Rev Lett ; 101(23): 234801, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19113559

ABSTRACT

The trend of volume reflection parameters (deflection angle and efficiency) in a bent (110) silicon crystal has been investigated as a function of the crystal curvature with 400 GeV/c protons on the H8 beam line at the CERN Super Proton Synchrotron. This Letter describes the analysis performed at six different curvatures showing that the optimal radius for volume reflection is approximately 10 times greater than the critical radius for channeling. A strong scattering of the beam by the planar potential is also observed for a bend radius close to the critical one.

4.
Phys Rev Lett ; 97(14): 144801, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155264

ABSTRACT

Volume reflection predicted in the mid-1980s by Taratin and Vorobiev has been observed for the first time in the interactions of a 70 GeV proton beam with a short bent crystal. Incident protons deviate from convex atomic planes in the bulk of the crystal as a result of coherent interaction with bent lattice around the tangency point of particle trajectory with a curved atomic plane. The deflection angle 2theta(R) was found to be (39.5+/-2.0) microrad, or (1.65+/-0.08)theta(c) in terms of the critical angle for channeling. The process has a large probability with respect to channeling and takes place in the angular range equal to the bend angle of atomic planes. It could possibly open new fields of application of crystals in high-energy particle beam optics.

5.
Phys Rev Lett ; 87(9): 094802, 2001 Aug 27.
Article in English | MEDLINE | ID: mdl-11531570

ABSTRACT

A silicon crystal was used to channel and extract 70 GeV protons from the U-70 accelerator with an efficiency of 85.3+/-2.8%, as measured for a beam of approximately 10(12) protons directed towards crystals of approximately 2 mm length in spills of approximately 2 s duration. The experimental data follow very well the prediction of Monte Carlo simulations. This demonstration is important in devising a more efficient use of the U-70 accelerator in Protvino and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.

SELECTION OF CITATIONS
SEARCH DETAIL
...