Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Immunol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311665

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates M. tuberculosis infection outcomes in people living with HIV. Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. In this study, we investigated the immune responses elicited by BCG administered via i.v. or intradermal (i.d.) routes in SIV-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of M. tuberculosis challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic effectors, and key transcription factors. Our results showed that i.v. BCG induces a robust and sustained immune response, including tissue-resident memory T cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of i.v. BCG-vaccinated MCM. Although i.v. BCG vaccination resulted in an influx of tissue-resident memory T cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>105 copies/ml) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on i.v. BCG-induced protection against M. tuberculosis.

2.
bioRxiv ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39091805

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates Mtb infection outcomes in people living with HIV (PLWH). Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. Here, we investigated the immune responses elicited by BCG administered via intravenous (IV) or intradermal (ID) routes in Simian Immunodeficiency Virus (SIV)-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of Mtb challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic molecules, and key transcription factors. Our results showed that IV BCG induces a robust and sustained immune response, including tissue-resident memory T (TRM) cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of IV BCG-vaccinated MCM. Although IV BCG vaccination resulted in an influx of TRM cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>105 copies/mL) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on IV BCG-induced protection against Mtb.

3.
Immunity ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214090

ABSTRACT

Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.

4.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091843

ABSTRACT

Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children, despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4-8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n=5; i.v.) at 3- and 17- days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n=5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy eight weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.

5.
Sci Rep ; 14(1): 17031, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043722

ABSTRACT

Non-human primates remain the most useful and reliable pre-clinical model for many human diseases. Primate breath profiles have previously distinguished healthy animals from diseased, including non-human primates. Breath collection is relatively non-invasive, so this motivated us to define a healthy baseline breath profile that could be used in studies evaluating disease, therapies, and vaccines in non-human primates. A pilot study, which enrolled 30 healthy macaques, was conducted. Macaque breath molecules were sampled into a Tedlar bag, concentrated onto a thermal desorption tube, then desorbed and analyzed by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. These breath samples contained 2,017 features, of which 113 molecules were present in all breath samples. The core breathprint was dominated by aliphatic hydrocarbons, aromatic compounds, and carbonyl compounds. The data were internally validated with additional breath samples from a subset of 19 of these non-human primates. A critical core consisting of 23 highly abundant and invariant molecules was identified as a pragmatic breathprint set, useful for future validation studies in healthy primates.


Subject(s)
Breath Tests , Animals , Breath Tests/methods , Male , Pilot Projects , Female , Gas Chromatography-Mass Spectrometry/methods , Macaca , Volatile Organic Compounds/analysis
6.
Nat Commun ; 15(1): 5239, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937448

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.


Subject(s)
Mycobacterium tuberculosis , Positron-Emission Tomography , Trehalose , Tuberculosis , Animals , Mycobacterium tuberculosis/metabolism , Positron-Emission Tomography/methods , Trehalose/metabolism , Tuberculosis/diagnostic imaging , Tuberculosis/microbiology , Tuberculosis/metabolism , Humans , Mice , Fluorine Radioisotopes , Fluorodeoxyglucose F18/metabolism , Fluorodeoxyglucose F18/chemistry , Radiopharmaceuticals/metabolism , Disease Models, Animal , Female
7.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798646

ABSTRACT

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αß+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.

8.
J Virol ; 98(5): e0176223, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
10.
Clin Transl Immunology ; 12(11): e1474, 2023.
Article in English | MEDLINE | ID: mdl-38020728

ABSTRACT

Objectives: Tuberculosis (TB) remains a substantial cause of morbidity and mortality among people living with human immunodeficiency virus (HIV) worldwide. However, the immunological mechanisms associated with the enhanced susceptibility among HIV-positive individuals remain largely unknown. Methods: Here, we used a simian immunodeficiency virus (SIV)/TB-coinfection Mauritian cynomolgus macaque (MCM) model to examine humoral responses from the plasma of SIV-negative (n = 8) and SIV-positive (n = 7) MCM 8-week postinfection with Mycobacterium tuberculosis (Mtb). Results: Antibody responses to Mtb were impaired during SIV coinfection. Elevated inflammatory bulk IgG antibody glycosylation patterns were observed in coinfected macaques early at 8-week post-Mtb infection, including increased agalactosylation (G0) and reduced di-galactosylation (G2), which correlated with endpoint Mtb bacterial burden and gross pathology scores, as well as the time-to-necropsy. Conclusion: These studies suggest that humoral immunity may contribute to control of TB disease and support growing literature that highlights antibody Fc glycosylation as a biomarker of TB disease progression.

11.
Nat Microbiol ; 8(11): 2080-2092, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814073

ABSTRACT

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Tuberculosis , Animals , Humans , BCG Vaccine , Macaca mulatta , Leukocytes, Mononuclear , Vaccination
12.
J Exp Med ; 220(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37843832

ABSTRACT

The functional role of CD8+ lymphocytes in tuberculosis remains poorly understood. We depleted innate and/or adaptive CD8+ lymphocytes in macaques and showed that loss of all CD8α+ cells (using anti-CD8α antibody) significantly impaired early control of Mycobacterium tuberculosis (Mtb) infection, leading to increased granulomas, lung inflammation, and bacterial burden. Analysis of barcoded Mtb from infected macaques demonstrated that depletion of all CD8+ lymphocytes allowed increased establishment of Mtb in lungs and dissemination within lungs and to lymph nodes, while depletion of only adaptive CD8+ T cells (with anti-CD8ß antibody) worsened bacterial control in lymph nodes. Flow cytometry and single-cell RNA sequencing revealed polyfunctional cytotoxic CD8+ lymphocytes in control granulomas, while CD8-depleted animals were unexpectedly enriched in CD4 and γδ T cells adopting incomplete cytotoxic signatures. Ligand-receptor analyses identified IL-15 signaling in granulomas as a driver of cytotoxic T cells. These data support that CD8+ lymphocytes are required for early protection against Mtb and suggest polyfunctional cytotoxic responses as a vaccine target.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Macaca , Tuberculosis/microbiology , CD8-Positive T-Lymphocytes , Granuloma , CD4-Positive T-Lymphocytes
13.
J Immunol ; 211(4): 601-611, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37395686

ABSTRACT

Retinoic acid (RA) is a fundamental vitamin A metabolite involved in regulating immune responses through the nuclear RA receptor (RAR) and retinoid X receptor. While performing experiments using THP-1 cells as a model for Mycobacterium tuberculosis infection, we observed that serum-supplemented cultures displayed high levels of baseline RAR activation in the presence of live, but not heat-killed, bacteria, suggesting that M. tuberculosis robustly induces the endogenous RAR pathway. Using in vitro and in vivo models, we have further explored the role of endogenous RAR activity in M. tuberculosis infection through pharmacological inhibition of RARs. We found that M. tuberculosis induces classical RA response element genes such as CD38 and DHRS3 in both THP-1 cells and human primary CD14+ monocytes via a RAR-dependent pathway. M. tuberculosis-stimulated RAR activation was observed with conditioned media and required nonproteinaceous factor(s) present in FBS. Importantly, RAR blockade by (4-[(E)-2-[5,5-dimethyl-8-(2-phenylethynyl)-6H-naphthalen-2-yl]ethenyl]benzoic acid), a specific pan-RAR inverse agonist, in a low-dose murine model of tuberculosis significantly reduced SIGLEC-F+CD64+CD11c+high alveolar macrophages in the lungs, which correlated with 2× reduction in tissue mycobacterial burden. These results suggest that the endogenous RAR activation axis contributes to M. tuberculosis infection both in vitro and in vivo and reveal an opportunity for further investigation of new antituberculosis therapies.


Subject(s)
Mycobacterium tuberculosis , Receptors, Retinoic Acid , Mice , Humans , Animals , Receptors, Retinoic Acid/metabolism , Mycobacterium tuberculosis/metabolism , Drug Inverse Agonism , Tretinoin/pharmacology , Retinoid X Receptors
14.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Article in English | MEDLINE | ID: mdl-37319311

ABSTRACT

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Subject(s)
Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Antitubercular Agents , Moxifloxacin/therapeutic use , Tuberculosis/drug therapy
15.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37333343

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

16.
Cell Host Microbe ; 31(6): 962-977.e8, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37267955

ABSTRACT

Bacille Calmette-Guerin (BCG), the only approved Mycobacterium tuberculosis (Mtb) vaccine, provides limited durable protection when administered intradermally. However, recent work revealed that intravenous (i.v.) BCG administration yielded greater protection in macaques. Here, we perform a dose-ranging study of i.v. BCG vaccination in macaques to generate a range of immune responses and define correlates of protection. Seventeen of 34 macaques had no detectable infection after Mtb challenge. Multivariate analysis incorporating longitudinal cellular and humoral immune parameters uncovered an extensive and highly coordinated immune response from the bronchoalveolar lavage (BAL). A minimal signature predicting protection contained four BAL immune features, of which three remained significant after dose correction: frequency of CD4 T cells producing TNF with interferon γ (IFNγ), frequency of those producing TNF with IL-17, and the number of NK cells. Blood immune features were less predictive of protection. We conclude that CD4 T cell immunity and NK cells in the airway correlate with protection following i.v. BCG.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , BCG Vaccine , Macaca mulatta , Vaccination , Tuberculosis/prevention & control
17.
Res Sq ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37090620

ABSTRACT

Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.

18.
mBio ; 14(3): e0047723, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37039646

ABSTRACT

Despite the extensive research on CD4 T cells within the context of Mycobacterium tuberculosis (Mtb) infections, few studies have focused on identifying and investigating the profile of Mtb-specific T cells within lung granulomas. To facilitate the identification of Mtb-specific CD4 T cells, we identified immunodominant epitopes for two Mtb proteins, namely, Rv1196 and Rv0125, using a Mauritian cynomolgus macaque model of Mtb infection, thereby providing data for the synthesis of MHC class II tetramers. Using tetramers, we identified Mtb-specific cells within different immune compartments, postinfection. We found that granulomas were enriched sites for Mtb-specific cells and that tetramer+ cells had increased frequencies of the activation marker CD69 as well as the transcription factors T-bet and RORγT, compared to tetramer negative cells within the same sample. Our data revealed that while the frequency of Rv1196 tetramer+ cells was positively correlated with the granuloma bacterial burden, the frequency of RORγT or T-bet within tetramer+ cells was inversely correlated with the granuloma bacterial burden, thereby highlighting the importance of having activated, polarized, Mtb-specific cells for the control of Mtb in lung granulomas. IMPORTANCE Tuberculosis, caused by the bacterial pathogen Mycobacterium tuberculosis, kills 1.5 million people each year, despite the existence of effective drugs and a vaccine that is given to infants in most countries. Clearly, we need better vaccines against this disease. However, our understanding of the immune responses that are necessary to prevent tuberculosis is incomplete. This study seeks to understand the functions of T cells that are specific for M. tuberculosis at the site of the disease in the lungs. For this, we developed specialized tools called MHC class II tetramers to identify those T cells that can recognize M. tuberculosis and applied the tools to the study of this infection in nonhuman primate models that mimic human tuberculosis. We demonstrate that M. tuberculosis-specific T cells in lung lesions are associated with control of the bacteria only when those T cells are expressing certain functions, thereby highlighting the importance of combining the identification of specific T cells with functional analyses. Thus, we surmise that these functions of specific T cells are critical to the control of infection and should be considered as a part of the development of vaccines against tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mycobacterium tuberculosis/physiology , CD4-Positive T-Lymphocytes , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tuberculosis/microbiology , Granuloma , Macaca fascicularis , Transcription Factors/metabolism
19.
Infect Immun ; 91(5): e0055822, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37039653

ABSTRACT

Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.


Subject(s)
Anti-Retroviral Agents , Disease Models, Animal , Macaca , Mycobacterium tuberculosis , Simian Immunodeficiency Virus , Tuberculosis , Humans , Child, Preschool , Child , Animals , Tuberculosis/complications , Tuberculosis/immunology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Simian Immunodeficiency Virus/physiology , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocytes/immunology , Anti-Retroviral Agents/administration & dosage , Mycobacterium tuberculosis/physiology
20.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187598

ABSTRACT

Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.

SELECTION OF CITATIONS
SEARCH DETAIL