Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15560, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969673

ABSTRACT

Plastic foams, near-ubiquitous in everyday life and industry, show properties that depend primarily on density. Density measurement, although straightforward in principle, is not always easy. As such, while several methods are available, plastic foam industry is not yet supported with a standard technique that effectively enables to control density maps. To overcome this issue, this paper proposes Terahertz (THz) time-of-flight imaging using normal reflection measurements as a fast, relatively cheap, contactless, non-destructive and non-dangerous way to map plastic foam density, based on the expected relationship between density and refractive index. The approach is demonstrated in the case of polypropylene foams. First, the relationship between the estimated effective refractive index and the polypropylene foam density is derived by characterizing a set of carefully crafted samples having uniform density in the range 70-900 kg/m3. The obtained calibration curve subtends a linear relationship between the density and the refractive index in the range of interest. This relationship is validated against a set of test samples, whose estimated average densities are consistent with the nominal ones, with an absolute error lower than 10 kg/m3 and a percentage error on the estimate of 5%. Exploiting the calibration curve, it is possible to build quantitative images depicting the spatial distribution of the sample density. THz images are able to reveal the non-uniform density distribution of some samples, which cannot be appreciated from visual inspection. Finally, the complex spatial density pattern of a graded foam sample is characterized and quantitatively compared with the density map obtained via X-ray microscopy. The comparison confirms that the proposed THz approach successfully determines the density pattern with an accuracy and a spatial scale variability compliant with those commonly required for plastic foam density estimate.

2.
Diagnostics (Basel) ; 11(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34359315

ABSTRACT

This paper experimentally validates the capability of a microwave prototype device to localize hemorrhages and ischemias within the brain as well as proposes an innovative calibration technique based on the measured data. In the reported experiments, a 3-D human-like head phantom is considered, where the brain is represented either with a homogeneous liquid mimicking brain dielectric properties or with ex vivo calf brains. The microwave imaging (MWI) system works at 1 GHz, and it is realized with a low-complexity architecture formed by an array of twenty-four printed monopole antennas. Each antenna is embedded into the "brick" of a semi-flexible dielectric matching medium, and it is positioned conformal to the head upper part. The imaging algorithm exploits a differential approach and provides 3-D images of the brain region. It employs the singular value decomposition of the discretized scattering operator obtained via accurate numerical models. The MWI system analysis shows promising reconstruction results and extends the device validation.

3.
Diagnostics (Basel) ; 11(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34065015

ABSTRACT

Liver cancer is one of the most common liver malignancies worldwide. Thermal ablation has been recognized as a promising method for its treatment, with a significant impact on clinical practice. However, the treatment's effectiveness is heavily dependent on the experience of the clinician and would improve if paired with an image-guidance device for treatment monitoring. Conventional imaging modalities, such as computed tomography, ultrasound, and magnetic resonance imaging, show some disadvantages, motivating interest in alternative technologies. In this framework, microwave imaging was recently proposed as a potential candidate, being capable of implementing real-time monitoring by means of low-cost and portable devices. In this work, the in silico assessment of a microwave imaging device specifically designed for liver ablation monitoring is presented. To this end, an imaging experiment involving eight Vivaldi antennas in an array configuration and a practically realizable liver phantom mimicking the evolving treatment was simulated. In particular, since the actual phantom will be realized by 3D printing technology, the effect of the plastic shells containing tissues mimicking materials was investigated and discussed. The outcomes of this study confirm that the presence of printing materials does not impair the significance of the experiments and that the designed device is capable of providing 3D images of the ablated region conveying information on its extent and evolution. Moreover, the observed results suggest possible improvements to the system, paving the way for the next stage in which the device will be implemented and experimentally assessed in the same conditions as those simulated in this study.

4.
Sensors (Basel) ; 21(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923777

ABSTRACT

Magnetic nanoparticles enhanced microwave imaging relies on the capability of modulating the response of such nanocomponents at microwaves by means of a (low frequency) polarizing magnetic field. In medical imaging, this capability allows for the detection and imaging of tumors loaded with nanoparticles. As the useful signal is the one which arises from nanoparticles, it is crucial to remove sources of undesired disturbance to enable the diagnosis of early-stage tumors. In particular, spurious signals arise from instrumental drift, as well as from the unavoidable interaction between the polarizing field and the imaging system. In this paper, we experimentally assess and characterize such spurious effects in order to set the optimal working conditions for magnetic nanoparticles enhanced microwave imaging of cancer. To this end, simple test devices, which include all components typically comprised in a microwave imaging system, have been realized and exploited. The experiment's results allow us to derive design formulas and guidelines useful for limiting the impact of unwanted magnetic effects, as well as that relative to the instrumental drift on the signal generated by the magnetic nanoparticles-loaded tumor.


Subject(s)
Magnetite Nanoparticles , Microwave Imaging , Nanoparticles , Neoplasms , Diagnostic Imaging , Humans , Microwaves , Neoplasms/diagnostic imaging
5.
Sensors (Basel) ; 20(9)2020 May 03.
Article in English | MEDLINE | ID: mdl-32375220

ABSTRACT

This work focuses on brain stroke imaging via microwave technology. In particular, the open issue of monitoring patients after stroke onset is addressed here in order to provide clinicians with a tool to control the effectiveness of administered therapies during the follow-up period. In this paper, a novel prototype is presented and characterized. The device is based on a low-complexity architecture which makes use of a minimum number of properly positioned and designed antennas placed on a helmet. It exploits a differential imaging approach and provides 3D images of the stroke. Preliminary experiments involving a 3D phantom filled with brain tissue-mimicking liquid confirm the potential of the technology in imaging a spherical target mimicking a stroke of a radius equal to 1.25 cm.


Subject(s)
Imaging, Three-Dimensional , Microwaves , Stroke , Brain/diagnostic imaging , Humans , Phantoms, Imaging , Stroke/diagnostic imaging
6.
Diagnostics (Basel) ; 8(4)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563280

ABSTRACT

Thermal ablation treatments are gaining a lot of attention in the clinics thanks to their reduced invasiveness and their capability of treating non-surgical patients. The effectiveness of these treatments and their impact in the hospital's routine would significantly increase if paired with a monitoring technique able to control the evolution of the treated area in real-time. This is particularly relevant in microwave thermal ablation, wherein the capability of treating larger tumors in a shorter time needs proper monitoring. Current diagnostic imaging techniques do not provide effective solutions to this issue for a number of reasons, including economical sustainability and safety. Hence, the development of alternative modalities is of interest. Microwave tomography, which aims at imaging the electromagnetic properties of a target under test, has been recently proposed for this scope, given the significant temperature-dependent changes of the dielectric properties of human tissues induced by thermal ablation. In this paper, the outcomes of the first ex vivo experimental study, performed to assess the expected potentialities of microwave tomography, are presented. The paper describes the validation study dealing with the imaging of the changes occurring in thermal ablation treatments. The experimental test was carried out on two ex vivo bovine liver samples and the reported results show the capability of microwave tomography of imaging the transition between ablated and untreated tissue. Moreover, the discussion section provides some guidelines to follow in order to improve the achievable performances.

7.
IEEE Trans Med Imaging ; 35(2): 665-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26469125

ABSTRACT

In microwave breast cancer imaging magnetic nanoparticles have been recently proposed as contrast agent. Due to the non-magnetic nature of human tissues, magnetic nanoparticles make possible the overcoming of some limitations of conventional microwave imaging techniques, thus providing reliable and specific diagnosis of breast cancer. In this paper, a Compressive Sensing inspired inversion technique is introduced for the reconstruction of the magnetic contrast induced within the tumor. The applicability of Compressive Sensing theory is guaranteed by the fact that the underlying inverse scattering problem is linear and the searched magnetic perturbation is sparse. From the numerical analysis, performed in realistic conditions in 3D geometry, it has been pointed out that the adoption of this new tool allows improving resolution and accuracy of the reconstructions, as well as reducing the number of required measurements.


Subject(s)
Breast Neoplasms/diagnostic imaging , Contrast Media/chemistry , Imaging, Three-Dimensional/methods , Magnetite Nanoparticles/chemistry , Microwaves/therapeutic use , Algorithms , Breast/diagnostic imaging , Contrast Media/therapeutic use , Female , Humans , Magnetite Nanoparticles/therapeutic use , Phantoms, Imaging
8.
IEEE Trans Biomed Eng ; 62(4): 1195-1202, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25532165

ABSTRACT

Microwave imaging (MWI) is an emerging tool for medical diagnostics, potentially offering unique advantages such as the capability of providing quantitative images of the inspected tissues. This involves, however, solving a challenging nonlinear and ill-posed electromagnetic inverse scattering problem. This paper presents a robust method for quantitative MWI in medical applications where very little, if any, a priori information on the imaging scenario is available. This is accomplished by employing a distorted Born iterative method and a regularization by projection technique, which reconstructs the tissue parameters using a wavelet basis expansion to represent the unknown contrast. This approach is suited for any microwave medical imaging application where the requirement for increased resolution dictates the use of higher frequency data and, consequently, a robust regularization strategy. To demonstrate the robustness of the proposed approach, this paper presents reconstructions of highly heterogeneous anatomically realistic numerical breast phantoms in a canonical 2-D configuration.


Subject(s)
Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Microwaves , Wavelet Analysis , Breast/physiology , Computer Simulation , Female , Humans , Models, Biological , Phantoms, Imaging
9.
IEEE Trans Biomed Eng ; 62(2): 407-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25216473

ABSTRACT

Magnetic nanoparticles-enhanced microwave imaging has been recently proposed as an effective and reliable means to detect breast cancer. Thanks to the nonmagnetic nature of human tissues, the imaging problem corresponds to the retrieval of a weak magnetic anomaly hosted into an unknown nonmagnetic scenario. Hence, properly targeted magnetic nanoparticles in principle allow to avoid false positives and reduce occurrence of false negatives. In this paper, we outline some guidelines for the design of the imaging device based on an optimized measurement configuration. In particular, we determine the nonredundant number of probes and their collocation needed to ensure a reliable solution of the underlying inverse scattering problem. The analysis exploits the spectral properties of the relevant mathematical operators and it is corroborated by reporting numerical results exploiting the phantoms' repository from the University of Wisconsin. It is shown that magnetic nanoparticles-enhanced microwave imaging can reliably detect cancer lesions even using low-complexity arrangements, designed according to the devised guidelines.


Subject(s)
Breast Neoplasms/diagnosis , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetite Nanoparticles , Microwaves , Models, Biological , Breast Neoplasms/chemistry , Computer Simulation , Female , Humans , Magnetite Nanoparticles/chemistry , Reproducibility of Results , Sensitivity and Specificity
10.
IEEE Trans Biomed Eng ; 61(4): 1071-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658232

ABSTRACT

Magnetic nanoparticles-enhanced microwave imaging has been recently proposed to overcome the limitations of conventional microwave imaging methods for breast cancer monitoring. In this paper, we discuss how to tackle the linear inverse scattering problem underlying this novel technique in an effective way. In particular, our aim is to minimize the required a priori patient-specific information, avoid occurrence of false positives, and keep the computational burden low. By relying on an extensive numerical analysis in realistic conditions, we show that the method can provide accurate and reliable images without information on the inner structure of the inspected breast and with an only rough knowledge of its shape. Notably, this allows moving to an offline stage the computationally intensive part of the image formation procedure. In addition, we show how to appraise the total amount of magnetic contrast agent targeted in the tumor.


Subject(s)
Breast Neoplasms/pathology , Contrast Media/chemistry , Diagnostic Imaging/methods , Magnetite Nanoparticles , Microwaves , Breast/pathology , Female , Humans , Image Processing, Computer-Assisted , Models, Biological , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL