Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Math Biosci Eng ; 21(4): 5360-5393, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38872539

ABSTRACT

In this paper, we introduce a general numerical method to approximate the reproduction numbers of a large class of multi-group, age-structured, population models with a finite age span. To provide complete flexibility in the definition of the birth and transition processes, we propose an equivalent formulation for the age-integrated state within the extended space framework. Then, we discretize the birth and transition operators via pseudospectral collocation. We discuss applications to epidemic models with continuous and piecewise continuous rates, with different interpretations of the age variable (e.g., demographic age, infection age and disease age) and the transmission terms (e.g., horizontal and vertical transmission). The tests illustrate that the method can compute different reproduction numbers, including the basic and type reproduction numbers as special cases.


Subject(s)
Basic Reproduction Number , Computer Simulation , Humans , Basic Reproduction Number/statistics & numerical data , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Population Dynamics , Epidemics/statistics & numerical data , Algorithms , Age Factors , Models, Biological
2.
Math Biosci ; 365: 109068, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37716408

ABSTRACT

There are many plausible reasons for recurrent outbreaks of emerging infectious diseases. In this paper, we develop a mathematical model to illustrate how population behavioural adaption and adaptation implementation delay, in response to the perceived infection risk, can lead to recurrent outbreak patterns. We consider the early phase of an infection outbreak when herd immunity is not reached, pathogen mutation is not considered, and seasonality is ruled out as a major contributor. We derive a transmission dynamics model coupled with the renewal equation for the disease transmission effective contacts (contact rate per unit time multiplied by the transmission probability per contact). The model incorporates two critical parameters: the population behavioural adaptation flexibility index and the behavioural change implementation delay. We show that when the behavioural change implementation delay reaches a critical value, the number of infections starts to oscillate in an equilibrium that is determined by the population behavioural adaptation flexibility. We also show that the numbers of infections at the subsequent peaks can exceed that of the first peak. This was an oblique observation globally during the early phase of the COVID-19 pandemic before variants of concern emerged, and it was an observed phenomena with the Omicron variant induced wave in areas where early interventions were successful in preventing the large outbreaks. Our model and analyses can provide partially explanation for these observations.

3.
Math Biosci Eng ; 20(3): 4493-4515, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36896509

ABSTRACT

The asymptotic stability of the null equilibrium of a linear population model with two physiological structures formulated as a first-order hyperbolic PDE is determined by the spectrum of its infinitesimal generator. In this paper, we propose a general numerical method to approximate this spectrum. In particular, we first reformulate the problem in the space of absolutely continuous functions in the sense of Carathéodory, so that the domain of the corresponding infinitesimal generator is defined by trivial boundary conditions. Via bivariate collocation, we discretize the reformulated operator as a finite-dimensional matrix, which can be used to approximate the spectrum of the original infinitesimal generator. Finally, we provide test examples illustrating the converging behavior of the approximated eigenvalues and eigenfunctions, and its dependence on the regularity of the model coefficients.

4.
BMC Med ; 21(1): 25, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658548

ABSTRACT

BACKGROUND: Predicting the likely size of future SARS-CoV-2 waves is necessary for public health planning. In England, voluntary "plan B" mitigation measures were introduced in December 2021 including increased home working and face coverings in shops but stopped short of restrictions on social contacts. The impact of voluntary risk mitigation behaviours on future SARS-CoV-2 burden is unknown. METHODS: We developed a rapid online survey of risk mitigation behaviours ahead of the winter 2021 festive period and deployed in two longitudinal cohort studies in the UK (Avon Longitudinal Study of Parents and Children (ALSPAC) and TwinsUK/COVID Symptom Study (CSS) Biobank) in December 2021. Using an individual-based, probabilistic model of COVID-19 transmission between social contacts with SARS-CoV-2 Omicron variant parameters and realistic vaccine coverage in England, we predicted the potential impact of the SARS-CoV-2 Omicron wave in England in terms of the effective reproduction number and cumulative infections, hospital admissions and deaths. Using survey results, we estimated in real-time the impact of voluntary risk mitigation behaviours on the Omicron wave in England, if implemented for the entire epidemic wave. RESULTS: Over 95% of survey respondents (NALSPAC = 2686 and NTwins = 6155) reported some risk mitigation behaviours, with vaccination and using home testing kits reported most frequently. Less than half of those respondents reported that their behaviour was due to "plan B". We estimate that without risk mitigation behaviours, the Omicron variant is consistent with an effective reproduction number between 2.5 and 3.5. Due to the reduced vaccine effectiveness against infection with the Omicron variant, our modelled estimates suggest that between 55% and 60% of the English population could be infected during the current wave, translating into between 12,000 and 46,000 cumulative deaths, depending on assumptions about severity and vaccine effectiveness. The actual number of deaths was 15,208 (26 November 2021-1 March 2022). We estimate that voluntary risk reduction measures could reduce the effective reproduction number to between 1.8 and 2.2 and reduce the cumulative number of deaths by up to 24%. CONCLUSIONS: Predicting future infection burden is affected by uncertainty in disease severity and vaccine effectiveness estimates. In addition to biological uncertainty, we show that voluntary measures substantially reduce the projected impact of the SARS-CoV-2 Omicron variant but that voluntary measures alone would be unlikely to completely control transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Child , Humans , Longitudinal Studies , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology
5.
PLoS Comput Biol ; 18(9): e1010406, 2022 09.
Article in English | MEDLINE | ID: mdl-36067224

ABSTRACT

The first year of the COVID-19 pandemic put considerable strain on healthcare systems worldwide. In order to predict the effect of the local epidemic on hospital capacity in England, we used a variety of data streams to inform the construction and parameterisation of a hospital progression model, EpiBeds, which was coupled to a model of the generalised epidemic. In this model, individuals progress through different pathways (e.g. may recover, die, or progress to intensive care and recover or die) and data from a partially complete patient-pathway line-list was used to provide initial estimates of the mean duration that individuals spend in the different hospital compartments. We then fitted EpiBeds using complete data on hospital occupancy and hospital deaths, enabling estimation of the proportion of individuals that follow the different clinical pathways, the reproduction number of the generalised epidemic, and to make short-term predictions of hospital bed demand. The construction of EpiBeds makes it straightforward to adapt to different patient pathways and settings beyond England. As part of the UK response to the pandemic, EpiBeds provided weekly forecasts to the NHS for hospital bed occupancy and admissions in England, Wales, Scotland, and Northern Ireland at national and regional scales.


Subject(s)
COVID-19 , COVID-19/epidemiology , England/epidemiology , Hospitalization , Hospitals , Humans , Pandemics
6.
Epidemics ; 39: 100588, 2022 06.
Article in English | MEDLINE | ID: mdl-35679714

ABSTRACT

New disease challenges, societal demands and better or novel types of data, drive innovations in the structure, formulation and analysis of epidemic models. Innovations in modelling can lead to new insights into epidemic processes and better use of available data, yielding improved disease control and stimulating collection of better data and new data types. Here we identify key challenges for the structure, formulation, analysis and use of mathematical models of pathogen transmission relevant to current and future pandemics.


Subject(s)
Models, Theoretical , Pandemics , Pandemics/prevention & control
7.
R Soc Open Sci ; 9(3): 211863, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35308622

ABSTRACT

The attack ratio in a subpopulation is defined as the total number of infections over the total number of individuals in this subpopulation. Using a methodology based on an age-stratified transmission dynamics model, we estimated the attack ratio of COVID-19 among children (individuals 0-11 years) when a large proportion of individuals eligible for vaccination (age 12 and above) are vaccinated to contain the epidemic among this subpopulation, or the effective herd immunity (with additional physical distancing measures). We describe the relationship between the attack ratio among children, the time to remove infected individuals from the transmission chain and the children-to-children daily contact rate while considering the increased transmissibility of virus variants (using the Delta variant as an example). We illustrate the generality and applicability of the methodology established by performing an analysis of the attack ratio of COVID-19 among children in the population of Canada and in its province of Ontario. The clinical attack ratio, defined as the number of symptomatic infections over the total population, can be informed from the attack ratio and both can be reduced substantially via a combination of reduced social mixing and rapid testing and isolation of the children.

8.
Epidemics ; 38: 100546, 2022 03.
Article in English | MEDLINE | ID: mdl-35183834

ABSTRACT

Mathematical modelling and statistical inference provide a framework to evaluate different non-pharmaceutical and pharmaceutical interventions for the control of epidemics that has been widely used during the COVID-19 pandemic. In this paper, lessons learned from this and previous epidemics are used to highlight the challenges for future pandemic control. We consider the availability and use of data, as well as the need for correct parameterisation and calibration for different model frameworks. We discuss challenges that arise in describing and distinguishing between different interventions, within different modelling structures, and allowing both within and between host dynamics. We also highlight challenges in modelling the health economic and political aspects of interventions. Given the diversity of these challenges, a broad variety of interdisciplinary expertise is needed to address them, combining mathematical knowledge with biological and social insights, and including health economics and communication skills. Addressing these challenges for the future requires strong cross-disciplinary collaboration together with close communication between scientists and policy makers.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans , SARS-CoV-2
9.
J R Stat Soc Ser A Stat Soc ; 185(Suppl 1): S112-S130, 2022 Nov.
Article in English | MEDLINE | ID: mdl-37063605

ABSTRACT

The reproduction number R has been a central metric of the COVID-19 pandemic response, published weekly by the UK government and regularly reported in the media. Here, we provide a formal definition and discuss the advantages and most common misconceptions around this quantity. We consider the intuition behind different formulations of R , the complexities in its estimation (including the unavoidable lags involved), and its value compared to other indicators (e.g. the growth rate) that can be directly observed from aggregate surveillance data and react more promptly to changes in epidemic trend. As models become more sophisticated, with age and/or spatial structure, formulating R becomes increasingly complicated and inevitably model-dependent. We present some models currently used in the UK pandemic response as examples. Ultimately, limitations in the available data streams, data quality and time constraints force pragmatic choices to be made on a quantity that is an average across time, space, social structure and settings. Effectively communicating these challenges is important but often difficult in an emergency.

10.
Can Commun Dis Rep ; 47(7-8): 329-338, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34667443

ABSTRACT

BACKGROUND: When public health interventions are being loosened after several days of decline in the number of coronavirus disease 2019 (COVID-19) cases, it is of critical importance to identify potential strategies to ease restrictions while mitigating a new wave of more transmissible variants of concern (VOCs). We estimated the necessary enhancements to public health interventions for a partial reopening of the economy while avoiding the worst consequences of a new outbreak, associated with more transmissible VOCs. METHODS: We used a transmission dynamics model to quantify conditions that combined public health interventions must meet to reopen the economy without a large outbreak. These conditions are those that maintain the control reproduction number below unity, while accounting for an increase in transmissibility due to VOC. RESULTS: We identified combinations of the proportion of individuals exposed to the virus who are traced and quarantined before becoming infectious, the proportion of symptomatic individuals confirmed and isolated, and individual daily contact rates needed to ensure the control reproduction number remains below unity. CONCLUSION: Our analysis indicates that the success of restrictive measures including lockdown and stay-at-home orders, as reflected by a reduction in number of cases, provides a narrow window of opportunity to intensify case detection and contact tracing efforts to prevent a new wave associated with circulation of more transmissible VOCs.

11.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200264, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34053267

ABSTRACT

Early assessments of the growth rate of COVID-19 were subject to significant uncertainty, as expected with limited data and difficulties in case ascertainment, but as cases were recorded in multiple countries, more robust inferences could be made. Using multiple countries, data streams and methods, we estimated that, when unconstrained, European COVID-19 confirmed cases doubled on average every 3 days (range 2.2-4.3 days) and Italian hospital and intensive care unit admissions every 2-3 days; values that are significantly lower than the 5-7 days dominating the early published literature. Furthermore, we showed that the impact of physical distancing interventions was typically not seen until at least 9 days after implementation, during which time confirmed cases could grow eightfold. We argue that such temporal patterns are more critical than precise estimates of the time-insensitive basic reproduction number R0 for initiating interventions, and that the combination of fast growth and long detection delays explains the struggle in countries' outbreak response better than large values of R0 alone. One year on from first reporting these results, reproduction numbers continue to dominate the media and public discourse, but robust estimates of unconstrained growth remain essential for planning worst-case scenarios, and detection delays are still key in informing the relaxation and re-implementation of interventions. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Pandemics , COVID-19/virology , Humans , Italy/epidemiology , Physical Distancing , SARS-CoV-2
12.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200277, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34053270

ABSTRACT

We investigate the effect of school closure and subsequent reopening on the transmission of COVID-19, by considering Denmark, Norway, Sweden and German states as case studies. By comparing the growth rates in daily hospitalizations or confirmed cases under different interventions, we provide evidence that school closures contribute to a reduction in the growth rate approximately 7 days after implementation. Limited school attendance, such as older students sitting exams or the partial return of younger year groups, does not appear to significantly affect community transmission. In countries where community transmission is generally low, such as Denmark or Norway, a large-scale reopening of schools while controlling or suppressing the epidemic appears feasible. However, school reopening can contribute to statistically significant increases in the growth rate in countries like Germany, where community transmission is relatively high. In all regions, a combination of low classroom occupancy and robust test-and-trace measures were in place. Our findings underscore the need for a cautious evaluation of reopening strategies. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/pathogenicity , Adolescent , COVID-19/transmission , COVID-19/virology , Denmark/epidemiology , Europe/epidemiology , Germany/epidemiology , Humans , Norway/epidemiology , Schools/trends , Sweden/epidemiology
13.
R Soc Open Sci ; 8(4): 202091, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33868698

ABSTRACT

We propose a deterministic model capturing essential features of contact tracing as part of public health non-pharmaceutical interventions to mitigate an outbreak of an infectious disease. By incorporating a mechanistic formulation of the processes at the individual level, we obtain an integral equation (delayed in calendar time and advanced in time since infection) for the probability that an infected individual is detected and isolated at any point in time. This is then coupled with a renewal equation for the total incidence to form a closed system describing the transmission dynamics involving contact tracing. We define and calculate basic and effective reproduction numbers in terms of pathogen characteristics and contact tracing implementation constraints. When applied to the case of SARS-CoV-2, our results show that only combinations of diagnosis of symptomatic infections and contact tracing that are almost perfect in terms of speed and coverage can attain control, unless additional measures to reduce overall community transmission are in place. Under constraints on the testing or tracing capacity, a temporary interruption of contact tracing may, depending on the overall growth rate and prevalence of the infection, lead to an irreversible loss of control even when the epidemic was previously contained.

14.
J Math Ind ; 10(1): 28, 2020.
Article in English | MEDLINE | ID: mdl-33282625

ABSTRACT

Social contact mixing plays a critical role in influencing the transmission routes of infectious diseases. Moreover, quantifying social contact mixing patterns and their variations in a rapidly evolving pandemic intervened by changing public health measures is key for retroactive evaluation and proactive assessment of the effectiveness of different age- and setting-specific interventions. Contact mixing patterns have been used to inform COVID-19 pandemic public health decision-making; but a rigorously justified methodology to identify setting-specific contact mixing patterns and their variations in a rapidly developing pandemic, which can be informed by readily available data, is in great demand and has not yet been established. Here we fill in this critical gap by developing and utilizing a novel methodology, integrating social contact patterns derived from empirical data with a disease transmission model, that enables the usage of age-stratified incidence data to infer age-specific susceptibility, daily contact mixing patterns in workplace, household, school and community settings; and transmission acquired in these settings under different physical distancing measures. We demonstrated the utility of this methodology by performing an analysis of the COVID-19 epidemic in Ontario, Canada. We quantified the age- and setting (household, workplace, community, and school)-specific mixing patterns and their evolution during the escalation of public health interventions in Ontario, Canada. We estimated a reduction in the average individual contact rate from 12.27 to 6.58 contacts per day, with an increase in household contacts, following the implementation of control measures. We also estimated increasing trends by age in both the susceptibility to infection by SARS-CoV-2 and the proportion of symptomatic individuals diagnosed. Inferring the age- and setting-specific social contact mixing and key age-stratified epidemiological parameters, in the presence of evolving control measures, is critical to inform decision- and policy-making for the current COVID-19 pandemic.

15.
Infect Dis Model ; 5: 316-322, 2020.
Article in English | MEDLINE | ID: mdl-32518882

ABSTRACT

BACKGROUND: After the declaration of COVID-19 pandemic on March 11th, 2020, local transmission chains starting in different countries including Canada are forcing governments to take decisions on public health interventions to mitigate the spread of the epidemic. METHODS: We conduct data-driven and model-free estimations for the growth rates of the COVID-19 epidemics in Italy and Canada, by fitting an exponential curve to the daily reported cases. We use these estimates to predict epidemic trends in Canada under different scenarios of public health interventions. RESULTS: In Italy, the initial growth rate (0.22) has reduced to 0.1 two weeks after the lockdown of the country on March 8th, 2020. This corresponds to an increase of the doubling time from about 3.15 to almost 7 days. In comparison, the growth rate in Canada has increased from 0.13 between March 1st and 13th, to 0.25 between March 13th to 22nd. This current growth rate corresponds to a doubling time of 2.7 days, and therefore, unless further public health interventions are escalated in Canada, we project 15,000 cases by March 31st. However, the case number may be reduced to 4000 if escalated public health interventions could instantly reduce the growth rate to 0.1, the same level achieved in Italy. INTERPRETATION: Prompt and farsighted interventions are critical to counteract the very rapid initial growth of the COVID-19 epidemic in Canada. Mitigation plans must take into account the delayed effect of interventions by up to 2-weeks and the short doubling time of 3-4 days.

16.
Biology (Basel) ; 9(5)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429450

ABSTRACT

Since the beginning of the COVID-19 pandemic, most Canadian provinces have gone through four distinct phases of social distancing and enhanced testing. A transmission dynamics model fitted to the cumulative case time series data permits us to estimate the effectiveness of interventions implemented in terms of the contact rate, probability of transmission per contact, proportion of isolated contacts, and detection rate. This allows us to calculate the control reproduction number during different phases (which gradually decreased to less than one). From this, we derive the necessary conditions in terms of enhanced social distancing, personal protection, contact tracing, quarantine/isolation strength at each escalation phase for the disease control to avoid a rebound. From this, we quantify the conditions needed to prevent epidemic rebound during de-escalation by simply reversing the escalation process.

17.
J Math Biol ; 79(1): 281-328, 2019 07.
Article in English | MEDLINE | ID: mdl-31004216

ABSTRACT

We consider a mathematical model describing the maturation process of stem cells up to fully mature cells. The model is formulated as a differential equation with state-dependent delay, where maturity is described as a continuous variable. The maturation rate of cells may be regulated by the amount of mature cells and, moreover, it may depend on cell maturity: we investigate how the stability of equilibria is affected by the choice of the maturation rate. We show that the principle of linearised stability holds for this model, and develop some analytical methods for the investigation of characteristic equations for fixed delays. For a general maturation rate we resort to numerical methods and we extend the pseudospectral discretisation technique to approximate the state-dependent delay equation with a system of ordinary differential equations. This is the first application of the technique to nonlinear state-dependent delay equations, and currently the only method available for studying the stability of equilibria by means of established software packages for bifurcation analysis. The numerical method is validated on some cases when the maturation rate is independent of maturity and the model can be reformulated as a fixed-delay equation via a suitable time transformation. We exploit the analytical and numerical methods to investigate the stability boundary in parameter planes. Our study shows some drastic qualitative changes in the stability boundary under assumptions on the model parameters, which may have important biological implications.


Subject(s)
Cell Differentiation , Cell Self Renewal , Models, Biological , Stem Cells/physiology , Animals , Computer Simulation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...