Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 827: 154262, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35271930

ABSTRACT

This work evaluated, for the first time, the performance of an integral microalgae-based domestic wastewater treatment system composed of an anoxic reactor and an aerobic photobioreactor, coupled with an anaerobic digester for converting the produced algal-bacterial biomass into biogas, with regards to the removal of 16 contaminants of emerging concern (CECs): penicillin G, tetracycline, enrofloxacin, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen, diclofenac, progesterone, carbamazepine, triclosan and propylparaben. The influence of the hydraulic retention time (HRT) in the anoxic-aerobic bioreactors (4 and 2.5 days) and in the anaerobic digester (30 and 10 days) on the fate of these CECs was investigated. The most biodegradable contaminants (removal efficiency >80% regardless of HRT) were tetracycline, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen and propylparaben (degraded predominantly in the anoxic-aerobic bioreactors), and tetracycline, sulfamethoxazole, tylosin, trimethoprim and naproxen (degraded predominantly in the anaerobic reactor). The anoxic-aerobic bioreactors provided removal of at least 48% for all CECs tested. The most recalcitrant contaminants in the anaerobic reactor, which were not removed at any of the HRT tested, were enrofloxacin, ciprofloxacin, progesterone and propylparaben.


Subject(s)
Photobioreactors , Waste Disposal, Fluid , Acetaminophen , Anaerobiosis , Bacteria, Aerobic , Bioreactors , Ciprofloxacin , Dexamethasone , Enrofloxacin , Ibuprofen , Naproxen , Progesterone , Sewage , Sulfamethoxazole , Tetracyclines , Trimethoprim , Tylosin
2.
Sci Total Environ ; 706: 135745, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31806330

ABSTRACT

The maximum methane yield that can be obtained from anaerobic co-digestion of microalgae and waste activated sludge (WAS) mixtures, after thermal pretreatment at 65 °C during 4 h, was investigated. Furthermore, the fitting of the experimental data by five kinetic models (first-order, second-order, modified Gompertz, Logistic, and two-substrate) was evaluated. Thermal pretreatment increased the methane yield of single microalgae and WAS digestion by ≈ 44 and by ≈ 52%, respectively. The results also showed that up to 60% of WAS can be co-digested with microalgae without impairing the methane yield, producing up to 338 mLCH4 gVS-1. Data from digestion of non-pretreated microalgae and WAS were well described by all kinetic models, but digestion of thermally pretreated microalgae, WAS, and their co-digestion mixtures, was best fitted by means of a two-substrate model, indicating that after pretreatment it is necessary to take into account the contribution of both rapidly and slowly biodegradable fractions.


Subject(s)
Microalgae , Sewage , Anaerobiosis , Biofuels , Bioreactors , Kinetics , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...