Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Immunol ; 15: 1379924, 2024.
Article in English | MEDLINE | ID: mdl-38629076

ABSTRACT

Introduction: The clinical evolution of steroid-sensitive forms of pediatric idiopathic nephrotic syndrome (INS) is highly heterogeneous following the standard treatment with prednisone. To date, no prognostic marker has been identified to predict the severity of the disease course starting from the first episode. Methods: In this monocentric prospective cohort study we set up a reproducible and standardized flow cytometry panel using two sample tubes (one for B-cell and one for T-cell subsets) to extensively characterized the lymphocyte repertoire of INS pediatric patients. A total of 44 children with INS at disease onset were enrolled, sampled before and 3 months after standard induction therapy with prednisone and followed for 12 months to correctly classify their disease based on relapses. Age-matched controls with non immune-mediated renal diseases or with urological disorders were also enrolled. Demographical, clinical, laboratory and immunosuppressive treatment data were registered. Results: We found that children with INS at disease onset had significantly higher circulating levels of total CD19+ and specific B-cell subsets (transitional, mature-naïve, plasmablasts/plasmacells, CD19+CD27+, unswitched, switched and atypical memory B cells) and reduced circulating levels of Tregs, when compared to age-matched controls. Prednisone therapy restored most B- and T-cell alterations. When patients were subdivided based on disease relapse, relapsing patients had significantly more transitional, CD19+CD27+ memory and in particular unswitched memory B cells at disease onset, which were predictive of a higher risk of relapse in steroid-sensitive patients by logistic regression analysis, irrespective of age. In accordance, B-cell dysregulations resulted mainly associated with steroid-dependence when patients were stratified in different disease severity forms. Of note, Treg levels were reduced independently from the disease subgroup and were not completely normalized by prednisone treatment. Conclusion: We have set up a novel, reproducible, disease-specific flow cytometry panel that allows a comprehensive characterization of circulating lymphocytes. We found that, at disease onset, relapsing patients had significantly more transitional, CD19+CD27+ memory and unswitched memory B cells and those who are at higher risk of relapse had increased circulating levels of unswitched memory B cells, independently of age. This approach can allow prediction of clinical evolution, monitoring of immunosuppression and tailored treatment in different forms of INS.


Subject(s)
Nephrotic Syndrome , Humans , Child , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/drug therapy , Prednisone/therapeutic use , Flow Cytometry , Prospective Studies , Prognosis , Antigens, CD19/therapeutic use , Recurrence
2.
Cell Rep ; 42(5): 112446, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37119135

ABSTRACT

Common variable immune deficiency (CVID) is a heterogeneous disorder characterized by recurrent infections, low levels of serum immunoglobulins, and impaired vaccine responses. Autoimmune manifestations are common, but B cell central and peripheral selection mechanisms in CVID are incompletely understood. Here, we find that receptor editing, a measure of central tolerance, is increased in transitional B cells from CVID patients and that these cells have a higher immunoglobulin κ:λ ratio in CVID patients with autoimmune manifestations than in those with infection only. Contrariwise, the selection pressure in the germinal center on CD27bright memory B cells is decreased in CVID patients with autoimmune manifestations. Finally, functionally, T cell-dependent activation showed that naive B cells in CVID patients are badly equipped for activation and induction of mismatch repair genes. We conclude that central tolerance is functional whereas peripheral selection is defective in CVID patients with autoimmune manifestations, which could underpin the development of autoimmunity.


Subject(s)
Common Variable Immunodeficiency , Humans , Common Variable Immunodeficiency/genetics , B-Lymphocytes , Germinal Center , Precursor Cells, B-Lymphoid , Autoimmunity
3.
J Exp Clin Cancer Res ; 41(1): 326, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397148

ABSTRACT

BACKGROUND: Poor infiltration of functioning T cells renders tumors unresponsive to checkpoint-blocking immunotherapies. Here, we identified a combinatorial in situ immunomodulation strategy based on the administration of selected immunogenic drugs and immunotherapy to sensitize poorly T-cell-infiltrated neuroblastoma (NB) to the host antitumor immune response. METHODS: 975A2 and 9464D NB cell lines derived from spontaneous tumors of TH-MYCN transgenic mice were employed to study drug combinations able of enhancing the antitumor immune response using in vivo and ex vivo approaches. Migration of immune cells towards drug-treated murine-derived organotypic tumor spheroids (MDOTS) were assessed by microfluidic devices. Activation status of immune cells co-cultured with drug-treated MDOTS was evaluated by flow cytometry analysis. The effect of drug treatment on the immune content of subcutaneous or orthotopic tumors was comprehensively analyzed by flow-cytometry, immunohistochemistry and multiplex immunofluorescence. The chemokine array assay was used to detect soluble factors released into the tumor microenvironment. Patient-derived organotypic tumor spheroids (PDOTS) were generated from human NB specimens. Migration and activation status of autologous immune cells to drug-treated PDOTS were performed. RESULTS: We found that treatment with low-doses of mitoxantrone (MTX) recalled immune cells and promoted CD8+ T and NK cell activation in MDOTS when combined with TGFß and PD-1 blockade. This combined immunotherapy strategy curbed NB growth resulting in the enrichment of a variety of both lymphoid and myeloid immune cells, especially intratumoral dendritic cells (DC) and IFNγ- and granzyme B-expressing CD8+ T cells and NK cells. A concomitant production of inflammatory chemokines involved in remodelling the tumor immune landscape was also detected. Interestingly, this treatment induced immune cell recruitment against PDOTS and activation of CD8+ T cells and NK cells. CONCLUSIONS: Combined treatment with low-dose of MTX and anti-TGFß treatment with PD-1 blockade improves antitumor immunity by remodelling the tumor immune landscape and overcoming the immunosuppressive microenvironment of aggressive NB.


Subject(s)
Neuroblastoma , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Mitoxantrone/pharmacology , CD8-Positive T-Lymphocytes , Transforming Growth Factor beta , Cell Line, Tumor , Neuroblastoma/drug therapy , Mice, Transgenic , Tumor Microenvironment
4.
J Environ Manage ; 324: 116341, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36191501

ABSTRACT

The usage of disposable face mask to control the spread of COVID-19 disease has led to the alarming generation of a huge amount of plastic waste in a short span of time. On other hand, face masks are made of high-quality thermoplastic polymers that could be recovered and converted into valuable products. The aim of this study is to investigate a complementary approach for the recycling of face mask in lab-scale plants: the mechanical recycling of the filter in polypropylene (PP) and the chemical recycling of the whole face mask. For this purpose, a new designed surgical face mask was chemically and physically characterized. The results shows that the face mask was composed of 92.3 wt% high grade PP (filter), very similar to virgin PP but with a high melt volume index (MVI, 385 cm3/10 min) due to its non-woven manufacturing. The PP from face mask was mixed with recycled virgin PP in order to obtain a MVI suitable for the extrusion process and recycled as filament for 3D printing. This filament was used to print a specimen with a very similar visual quality of that printed with a commercial PP filament. Simultaneously, the whole face mask underwent a pyrolysis process to produce new feedstocks or fuels. Low-cost catalysts derived from coal fly ash (CFA) were employed to enhance the production of light hydrocarbons. In particular, the synthetized acid X zeolite (HX/CFA) improved the yield of light fractions up to 91 wt% (79 wt% for thermal pyrolysis) and the quality of the light oil with the 85% of C6-C10 (55% for thermal pyrolysis). Furthermore, HX/CFA decreased the degradation temperature of PP to 384 °C versus 458 °C of thermal cracking.


Subject(s)
COVID-19 , Masks , Humans , Recycling , Plastics , Pyrolysis , Polypropylenes
5.
Cell Host Microbe ; 30(3): 400-408.e4, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35134333

ABSTRACT

Breakthrough SARS-CoV-2 infections in fully vaccinated individuals are considered a consequence of waning immunity. Serum antibodies represent the most measurable outcome of vaccine-induced B cell memory. When antibodies decline, memory B cells are expected to persist and perform their function, preventing clinical disease. We investigated whether BNT162b2 mRNA vaccine induces durable and functional B cell memory in vivo against SARS-CoV-2 3, 6, and 9 months after the second dose in a cohort of health care workers (HCWs). While we observed physiological decline of SARS-CoV-2-specific antibodies, memory B cells persist and increase until 9 months after immunization. HCWs with breakthrough infections had no signs of waning immunity. In 3-4 days, memory B cells responded to SARS-CoV-2 infection by producing high levels of specific antibodies in the serum and anti-Spike IgA in the saliva. Antibodies to the viral nucleoprotein were produced with the slow kinetics typical of the response to a novel antigen.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Vaccination , Vaccines, Synthetic , mRNA Vaccines
7.
J Exp Clin Cancer Res ; 40(1): 364, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34784956

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC. METHODS: The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. RESULTS: TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation. CONCLUSIONS: Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Epigenesis, Genetic/genetics , Liver Neoplasms/drug therapy , Morpholines/therapeutic use , Sorafenib/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice , Mice, Inbred NOD , Morpholines/pharmacology , Sorafenib/pharmacology
8.
Front Immunol ; 12: 690534, 2021.
Article in English | MEDLINE | ID: mdl-34367150

ABSTRACT

High quality medical assistance and preventive strategies, including pursuing a healthy lifestyle, result in a progressively growing percentage of older people. The population and workforce is aging in all countries of the world. It is widely recognized that older individuals show an increased susceptibility to infections and a reduced response to vaccination suggesting that the aged immune system is less able to react and consequently protect the organism. The SARS-CoV-2 pandemic is dramatically showing us that the organism reacts to novel pathogens in an age-dependent manner. The decline of the immune system observed in aging remains unclear. We aimed to understand the role of B cells. We analyzed peripheral blood from children (4-18 years); young people (23-60 years) and elderly people (65-91 years) by flow cytometry. We also measured antibody secretion by ELISA following a T-independent stimulation. Here we show that the elderly have a significant reduction of CD27dull memory B cells, a population that bridges innate and adaptive immune functions. In older people, memory B cells are mostly high specialized antigen-selected CD27bright. Moreover, after in vitro stimulation with CpG, B cells from older individuals produced significantly fewer IgM and IgA antibodies compared to younger individuals. Aging is a complex process characterized by a functional decline in multiple physiological systems. The immune system of older people is well equipped to react to often encountered antigens but has a low ability to respond to new pathogens.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , COVID-19 , Immunologic Memory , Pandemics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/immunology , Child , Child, Preschool , Cytokines/immunology , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Male , Middle Aged
9.
Cancers (Basel) ; 13(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062786

ABSTRACT

Isoform D of type 4 phosphodiesterase (PDE4D) has recently been associated with several human cancer types with the exception of human hepatocellular carcinoma (HCC). Here we explored the role of PDE4D in HCC. We found that PDE4D gene/protein were over-expressed in different samples of human HCCs compared to normal livers. Accordingly, HCC cells showed higher PDE4D activity than non-tumorigenic cells, accompanied by over-expression of the PDE4D isoform. Silencing of PDE4D gene and pharmacological inhibition of protein activity by the specific inhibitor Gebr-7b reduced cell proliferation and increased apoptosis in HCC cells, with a decreased fraction of cells in S phase and a differential modulation of key regulators of cell cycle and apoptosis. PDE4D silencing/inhibition also affected the gene expression of several cancer-related genes, such as the pro-oncogenic insulin growth factor (IGF2), which is down-regulated. Finally, gene expression data, available in the CancerLivER data base, confirm that PDE4D over-expression in human HCCs correlated with an increased expression of IGF2, suggesting a new possible molecular network that requires further investigations. In conclusion, intracellular depletion/inhibition of PDE4D prevents the growth of HCC cells, displaying anti-oncogenic effects. PDE4D may thus represent a new biomarker for diagnosis and a potential adjuvant target for HCC therapy.

10.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-33963009

ABSTRACT

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are among the most common and incurable malignant neoplasms of childhood. Despite aggressive, multimodal treatment, the outcome of children with high-grade gliomas has not significantly improved over the past decades, prompting the development of innovative approaches. METHODS: To develop an effective treatment, we aimed at improving the suboptimal antitumor efficacy of oncolytic adenoviruses (OAs) by testing the combination with a gene-therapy approach using a bispecific T-cell engager (BiTE) directed towards the erythropoietin-producing human hepatocellular carcinoma A2 receptor (EphA2), conveyed by a replication-incompetent adenoviral vector (EphA2 adenovirus (EAd)). The combinatorial approach was tested in vitro, in vivo and thoroughly characterized at a molecular level. RESULTS: After confirming the relevance of EphA2 as target in pHGGs, documenting a significant correlation with worse clinical outcome of the patients, we showed that the proposed strategy provides significant EphA2-BiTE amplification and enhanced tumor cell apoptosis, on coculture with T cells. Moreover, T-cell activation through an agonistic anti-CD28 antibody further increased the activation/proliferation profiles and functional response against infected tumor cells, inducing eradication of highly resistant, primary pHGG cells. The gene-expression analysis of tumor cells and T cells, after coculture, revealed the importance of both EphA2-BiTE and costimulation in the proposed system. These in vitro observations translated into significant tumor control in vivo, in both subcutaneous and a more challenging orthotopic model. CONCLUSIONS: The combination of OA and EphA2-BiTE gene therapy strongly enhances the antitumor activity of OA, inducing the eradication of highly resistant tumor cells, thus supporting the clinical translation of the approach.


Subject(s)
Adenoviridae/genetics , Antibodies, Bispecific/genetics , Brain Neoplasms/therapy , Genetic Therapy , Glioma/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Receptor, EphA2/genetics , Adenoviridae/metabolism , Adenoviridae/pathogenicity , Animals , Antibodies, Bispecific/metabolism , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/virology , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic , Female , Gene Expression Regulation, Neoplastic , Genetic Vectors , Glioma/genetics , Glioma/metabolism , Glioma/virology , Humans , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred NOD , Mice, SCID , Neoplasm Grading , Oncolytic Viruses/metabolism , Oncolytic Viruses/pathogenicity , Receptor, EphA2/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
11.
Methods Mol Biol ; 2270: 3-25, 2021.
Article in English | MEDLINE | ID: mdl-33479890

ABSTRACT

The spleen is the second major reservoir of B cells in the adult. In the spleen, cells, generated in the bone marrow, are selected, mature, and become part of the peripheral B-cell pool. Murine spleen comprises several B-cell subsets representing various maturation stages and/or cell functions. The spleen is a complex lymphoid organ organized into two main structures with different functions: the red and white pulp. The red pulp is flowed with blood while the white pulp is organized in primary follicles, with a B-cell area composed of follicular B cells and a T-cell area surrounding a periarterial lymphatic sheath. The frontier between the red and white pulp is defined as the marginal zone (MZ) and contains the MZ B cells. Because B cells, localized in different areas, are characterized by distinct expression levels of B-cell receptor (BCR) and of other surface markers, splenic B-cell subsets can be easily identified and purified by flow cytometry analyses and fluorescence-activated cell sorting (FACS).Here, we will focus on MZ B cells and on their precursors, giving some experimental hints to identify, generate, and isolate these cells. We will combine the use of FACS analysis and confocal microscopy to visualize MZ B cells in cell suspensions and in tissue sections, respectively. We will also give some clues to analyze B-cell repertoire on isolated MZ-B cells.


Subject(s)
B-Lymphocyte Subsets/metabolism , Flow Cytometry/methods , Spleen/cytology , Animals , B-Lymphocytes/cytology , Lymphoid Tissue/immunology , Mice , Receptors, Antigen, B-Cell/metabolism
12.
Haematologica ; 106(4): 987-999, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32381575

ABSTRACT

The prognosis of many patients with chemotherapy-refractory or multiply relapsed CD30+ non-Hodgkin Lymphoma (NHL) or Hodgkin lymphoma (HL) still remains poor, and novel therapeutic approaches are warranted to address this unmet clinical need. In light of this consideration, we designed and pre-clinically validated a Chimeric Antigen Receptor (CAR) construct characterized by a novel anti-CD30 single-chain variable-fragment cassette, linked to CD3ζ by the signaling domains of two costimulatory molecules, namely either CD28.4-1BB or CD28.OX40. We found that CAR.CD30 T-cells exhibit remarkable cytolytic activity in vitro against HL and NHL cell lines, with sustained proliferation and pro-inflammatory cytokine production, even after multiple and sequential lymphoma cell challenges. CAR.CD30 T-cells also demonstrated anti-lymphoma activity in two in vivo xenograft immune-deficient mouse models of metastatic HL and NHL. We observed that administration of CAR.CD30 T-cells, incorporating the CD28.OX40 costimulatory domains and manufactured in the presence of IL7 and IL15, were associated with the best overall survival in the treated mice, along with the establishment of a long-term immunological memory, able to protect mice from further tumor re-challenge. Our data indicate that, in the context of in vivo systemic metastatic xenograft mouse models, the costimulatory machinery of CD28.OX40 is crucial for improving persistence, in vivo expansion and proliferation of CAR.CD30 T-cells upon tumor encounter. CD28.OX40 costimulatory combination is ultimately responsible for the antitumor efficacy of the approach, paving the way to translate this therapeutic strategy in patients with CD30+ HL and NHL.


Subject(s)
CD28 Antigens , Receptors, Chimeric Antigen , Animals , Humans , Immunotherapy, Adoptive , Mice , Receptors, Antigen, T-Cell , T-Lymphocytes
13.
J Cell Commun Signal ; 14(4): 417-426, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32583269

ABSTRACT

Cancer cells are able to release high amounts of extracellular vesicles, thereby conditioning the normal cells in the surrounding tissue and/or in distant target organs. In the context of bone cancers, previous studies suggested that osteosarcoma cancer cells produce transforming extracellular vesicles able to induce a tumour-like phenotype in normal recipient cells. Indeed, phosphoinositide-specific phospholipase C (PI-PLC) enzymes are differentially expressed in osteosarcoma cell lines with increasing aggressiveness, thus providing helpful insights to better define their role and functions in this bone tumour. By confocal microscopy analysis, we demonstrated that osteosarcoma-derived extracellular vesicles convey all the assessed PI-PLC isoforms, and that they localize into cell membrane bubble-like structures, resembling extracellular vesicles about to be released, as conveyed and/or membrane protein. Cytofluorimetric analysis confirmed the presence of PI-PLC isoforms in the extracellular vesicles collected from conditioned media of osteosarcoma cells. These findings suggest the feasibility to use circulating extracellular vesicles as biomarkers of osteosarcoma progression and/or the monitoring of this distressing disease.

14.
Cell Rep ; 30(9): 2963-2977.e6, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130900

ABSTRACT

Memory B cells (MBCs) epitomize the adaptation of the immune system to the environment. We identify two MBC subsets in peripheral blood, CD27dull and CD27bright MBCs, whose frequency changes with age. Heavy chain variable region (VH) usage, somatic mutation frequency replacement-to-silent ratio, and CDR3 property changes, reflecting consecutive selection of highly antigen-specific, low cross-reactive antibody variants, all demonstrate that CD27dull and CD27bright MBCs represent sequential MBC developmental stages, and stringent antigen-driven pressure selects CD27dull into the CD27bright MBC pool. Dynamics of human MBCs are exploited in pregnancy, when 50% of maternal MBCs are lost and CD27dull MBCs transit to the more differentiated CD27bright stage. In the postpartum period, the maternal MBC pool is replenished by the expansion of persistent CD27dull clones. Thus, the stability and flexibility of human B cell memory is ensured by CD27dull MBCs that expand and differentiate in response to change.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Immunoglobulin Class Switching/genetics , Immunoglobulin Variable Region/genetics , Immunologic Memory/genetics , Infant , Infant, Newborn , Middle Aged , Models, Immunological , Pregnancy , Somatic Hypermutation, Immunoglobulin/genetics , Tissue Donors , Transcription, Genetic
15.
Front Immunol ; 9: 2683, 2018.
Article in English | MEDLINE | ID: mdl-30515165

ABSTRACT

Children with Down Syndrome (DS) suffer from immune deficiency with a severe reduction in switched memory B cells (MBCs) and poor response to vaccination. Chromosome 21 (HSA21) encodes two microRNAs (miRs), miR-125b, and miR-155, that regulate B-cell responses. We studied B- and T- cell subpopulations in tonsils of DS and age-matched healthy donors (HD) and found that the germinal center (GC) reaction was impaired in DS. GC size, numbers of GC B cells and Follicular Helper T cells (TFH) expressing BCL6 cells were severely reduced. The expression of miR-155 and miR-125b was increased in tonsillar memory B cells and miR-125b was also higher than expected in plasma cells (PCs). Activation-induced cytidine deaminase (AID) protein, a miR-155 target, was significantly reduced in MBCs of DS patients. Increased expression of miR-155 was also observed in vitro. MiR-155 was significantly overexpressed in PBMCs activated with CpG, whereas miR-125b was constitutively higher than normal. The increase of miR-155 and its functional consequences were blocked by antagomiRs in vitro. Our data show that the expression of HSA21-encoded miR-155 and miR-125b is altered in B cells of DS individuals both in vivo and in vitro. Because of HSA21-encoded miRs may play a role also in DS-associated dementia and leukemia, our study suggests that antagomiRs may represent pharmacological tools useful for the treatment of DS.


Subject(s)
B-Lymphocytes/immunology , Down Syndrome/immunology , Immunologic Memory , MicroRNAs/immunology , B-Lymphocytes/pathology , Down Syndrome/genetics , Down Syndrome/pathology , Female , Humans , Male , MicroRNAs/genetics
16.
Oncoimmunology ; 7(6): e1433518, 2018.
Article in English | MEDLINE | ID: mdl-29872565

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has been shown to be dramatically effective in the treatment of B-cell malignancies. However, there are still substantial obstacles to overcome, before similar responses can be achieved in patients with solid tumors. We evaluated both in vitro and in a preclinical murine model the efficacy of different 2nd and 3rd generation CAR constructs targeting GD2, a disial-ganglioside expressed on the surface of neuroblastoma (NB) tumor cells. In order to address potential safety concerns regarding clinical application, an inducible safety switch, namely inducible Caspase-9 (iC9), was also included in the vector constructs. Our data indicate that a 3rd generation CAR incorporating CD28.4-1BB costimulatory domains is associated with improved anti-tumor efficacy as compared with a CAR incorporating the combination of CD28.OX40 domains. We demonstrate that the choice of 4-1BB signaling results into significant amelioration of several CAR T-cell characteristics, including: 1) T-cell exhaustion, 2) basal T-cell activation, 3) in vivo tumor control and 4) T-cell persistence. The fine-tuning of T-cell culture conditions obtained using IL7 and IL15 was found to be synergic with the CAR.GD2 design in increasing the anti-tumor activity of CAR T cells. We also demonstrate that activation of the suicide gene iC9, included in our construct without significantly impairing neither CAR expression nor anti-tumor activity, leads to a prompt induction of apoptosis of GD2.CAR T cells. Altogether, these findings are instrumental in optimizing the function of CAR T-cell products to be employed in the treatment of children with NB.

17.
Immunol Lett ; 199: 1-15, 2018 07.
Article in English | MEDLINE | ID: mdl-29715493

ABSTRACT

The full development of the mammalian immune system occurs after birth upon exposure to non self-antigens. The gut is the first site of bacterial colonization where it is crucial to create the appropriate microenvironment able to balance effector or tolerogenic responses to external stimuli. It is a well-established fact that at mucosal sites bacteria play a key role in developing the immune system but we ignore how colonising bacteria impact the maturation of the spleen. Here we addressed this issue. Taking advantage of the fact that milk SIgA regulates bacterial colonization of the newborn intestine, we generated immunocompetent mice born either from IgA pro-efficient or IgA deficient females. Having demonstrated that SIgA in maternal milk modulates neonatal gut microbiota by promoting an increased diversity of the colonizing species we also found that immunocompetent pups, not exposed to milk SIgA, fail to properly develop the FDC network and primary follicles in the spleen compromising the response to T-dependent antigens. The presence of a less diverse microbiota with a higher representation of pathogenic species leads to a fast replenishment of the marginal zone and the IgM plasma cell compartment of the spleen as well as IgA plasma cells in the gut.


Subject(s)
B-Lymphocytes/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A, Secretory/immunology , Spleen/growth & development , Spleen/immunology , Animals , DNA-Binding Proteins/genetics , Female , Male , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , T-Lymphocytes/immunology
18.
J Cell Physiol ; 233(8): 6158-6172, 2018 08.
Article in English | MEDLINE | ID: mdl-29323709

ABSTRACT

Osteosarcoma is the most common primary bone cancer and the most frequent cause of bone cancer-related deaths in children and adolescents. Osteosarcoma cells are able to establish a crosstalk with resident bone cells leading to the formation of a deleterious vicious cycle. We hypothesized that osteosarcoma cells can release, in the bone microenvironment, transforming Extracellular Vesicles (EVs) involved in regulating bone cell proliferation and differentiation, thereby promoting tumor growth. We assessed EV production by three osteosarcoma cell lines with increasing aggressiveness in order to investigate their roles in the communication between osteosarcoma cells and normal recipient cells. Osteosarcoma-derived EVs were used to treat the murine fibroblast cell line NIH3T3 and to study the induction of tumor-like phenotypes. Our results showed that osteosarcoma cell lines are able to produce EVs that fuse to recipient cells, with a very high uptake efficiency. The treatment of recipient NIH3T3 with osteosarcoma-derived EVs induced substantial biological and functional effects, as an enhanced proliferation and survival capability under starved conditions, high levels of activated survival pathways, an increased migration, adhesion, and 3D sphere formation and the acquired capability to grow in an anchorage-independent manner. Moreover, in murine NIH3T3 we found human mRNAs of TNF-α, IL-6, and TGF-ß, as well as a de novo expression of murine MMP-9 and TNF-α following the treatment of human osteosarcoma-derived EVs.


Subject(s)
Bone Neoplasms/pathology , Extracellular Vesicles/pathology , Osteosarcoma/pathology , Animals , Bone Neoplasms/metabolism , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Line , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , NIH 3T3 Cells , Osteosarcoma/metabolism , Phenotype , Tumor Microenvironment/physiology
19.
J Environ Manage ; 197: 231-238, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28391096

ABSTRACT

Pyrolysis is a widely studied thermochemical process, however the disposal of the produced byproducts is an unexplored field. In particular, the acqueous phase, characterized by a high organic load (TOC), must be necessarily treated. Aims of this work is to study the potentiality of biochar as adsorbent material for the treatment of this wastewater. For this aim, pyrolysis wastewater and biochar produced in the same plant were used. Two biochars produced at different temperatures (550 and 750 °C) and an activated biochar produced by chemical activation with NaOH of the raw biomass were tested. The study shows that higher temperature in the biochar production leads to higher sorption capacity of the organic compounds due to an increase of the surface area. The activation process further increases the surface area of the biochar that becomes similar to that of a commercial activated carbon while the sorption capacity exceeds that of commercial activated carbon of 2.5 times.


Subject(s)
Charcoal , Wastewater , Adsorption , Biomass , Populus
20.
Eur J Immunol ; 47(1): 131-143, 2017 01.
Article in English | MEDLINE | ID: mdl-27800605

ABSTRACT

Around 65% of primary immunodeficiencies are antibody deficiencies. Functional tests are useful tools to study B-cell functions in vitro. However, no accepted guidelines for performing and evaluating functional tests have been issued yet. Here, we report our experience on the study of B-cell functions in infancy and throughout childhood. We show that T-independent stimulation with CpG measures proliferation and differentiation potential of memory B cells. Switched memory B cells respond better than IgM memory B cells. On the other hand, CD40L, a T-dependent stimulus, does not induce plasma cell differentiation, but causes proliferation of naïve and memory B cells. During childhood, the production of plasmablasts in response to CpG increases with age mirroring the development of memory B cells. The response to CD40L does not change with age. In patients with selective IgA deficiency (SIgAD), we observed that switched memory B cells are reduced due to the absence of IgA memory B cells. In agreement, IgA plasma cells are not generated in response to CpG. Unexpectedly, B cells from SIgAD patients show a reduced proliferative response to CD40L. Our results demonstrate that functional tests are an important tool to assess the functions of the humoral immune system.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , CD40 Ligand/immunology , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Lymphocyte Activation/immunology , Oligodeoxyribonucleotides/immunology , Adolescent , Adult , Age Factors , Biomarkers , CD40 Antigens/metabolism , Cells, Cultured , Child , Child, Preschool , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin Class Switching , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunologic Deficiency Syndromes/blood , Immunologic Memory , Immunophenotyping , Infant , Phenotype , Protein Binding , Receptors, Antigen, B-Cell/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...