Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(24): 35789-35799, 2024 May.
Article in English | MEDLINE | ID: mdl-38744761

ABSTRACT

Thermo-mechanical pulping produces well-individualized fibers compared to wood particles and less fragile fibers compared to Kraft pulping, besides presenting higher volume, higher yield, and lower production cost, which can be an exciting alternative for the fiber-cement industries. This study evaluated the impact of soak and dry-aging cycles on the performance of extruded composites reinforced with non-bleached eucalyptus fibers. The cement matrix comprised cement (70%) and limestone (30%). Composites were reinforced with 1 to 5% of eucalyptus fiber by cement mass and tested on the 28th day of cure at 99% relative humidity and after 400 accelerated aging cycles. The water absorption and apparent porosity gradually increased with the reinforcement level. Composites with 4 and 5% fibers showed the highest toughness (0.21 and 0.23 kJ/m2, respectively). The aging by 400 soak-dry cycles reduced the composites' water absorption and apparent porosity. The modulus of elasticity (MOE), rupture (MOR), and toughness increased, except for toughness for composites reinforced with 1 and 5% fibers, explained by the cementitious matrix's continuous hydration, fiber mineralization, and natural carbonation. In general, eucalyptus thermo-mechanical fibers were suitable for producing cementitious composites. Cementitious composites with 3% fibers presented a higher MOR, MOE, low water absorption, and apparent porosity after 400 accelerated aging cycles. In addition, the composites with 4% fibers also presented remarkable improvements in these properties. The aging cycles did not result in composites with less resistance, a positive fact for their application as tiles and materials for external use in civil construction.


Subject(s)
Construction Materials , Eucalyptus , Eucalyptus/chemistry , Porosity , Materials Testing
2.
Polymers (Basel) ; 15(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37688272

ABSTRACT

The development of packaging films made from renewable raw materials, which cause low environmental impact, has gained attention due to their attractive properties, which have become an exciting option for synthetic films. In this study, cellulose micro/nanofibrils (MFC/NFC) films were produced with forest residues from the Amazon region and evaluated for their potential to generate alternative packaging to traditional plastic packaging. The MFC/NFC were obtained by mechanical fibrillation from fibers of açaí seeds (Euterpe oleracea), titica vine (Heteropsis flexuosa), and commercial pulps of Eucalyptus sp. for comparison. The fibrillation of the titica vine culminated in higher energy expenditure on raw materials. The açaí films showed a higher tensile strength (97.2 MPa) compared to the titica films (46.2 MPa), which also showed a higher permeability rate (637.3 g day-1 m-2). Films of all raw materials scored the highest in the grease resistance test (n° 12). The films produced in the study showed potential for use in packaging for light and low moisture products due to their adequate physical, mechanical, and barrier characteristics. New types of pre-treatments or fibrillation methods ecologically correct and viable for reducing energy consumption must be developed, mainly for a greater success of titica vine fibrillation at the nanoscale.

3.
Int J Biol Macromol ; 235: 123850, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36863677

ABSTRACT

In this work, nanofibrillated cellulose (NFC) was extracted from cactus Cereus jamacaru DC. (mandacaru) for nanopaper production. The technique adopted includes alkaline treatment, bleaching, and grinding treatment. The NFC was characterized according to its properties and scored based on a quality index. Particle homogeneity, turbidity, and microstructure of the suspensions were evaluated. Correspondingly, the optical and physical-mechanical properties of the nanopapers were investigated. The chemical constituents of the material were analyzed. The sedimentation test and the zeta potential analyzed the stability of the NFC suspension. The morphological investigation was performed using environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis revealed that Mandacaru NFC has high crystallinity. Thermogravimetric analysis (TGA) and mechanical analysis were also used and revealed good thermal stability and good mechanical properties of the material. Therefore, the application of mandacaru is interesting in sectors such as packaging and electronic device development, as well as in composite materials. Given its score of 72 points on a quality index, this material was presented as an attractive, facile, and innovative source for obtaining NFC.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry
4.
Environ Sci Pollut Res Int ; 30(22): 62641-62652, 2023 May.
Article in English | MEDLINE | ID: mdl-36947382

ABSTRACT

Using mineral and agro-industrial wastes associated with the cement matrix can add value and guarantee suitable properties for reinforced composites. This research aimed to evaluate the effect of the incorporation of quartzite and coconut fibers on masonry blocks' physical, mechanical, and thermal properties. Quartzite was evaluated replacing 0%, 25%, 50%, 75%, and 100% of the sand, whereas the coconut fibers were added in a proportion of 2.5% of the volume of gravel. Quartzite residues were analyzed regarding their granulometry, chemical composition, and pozzolanicity. The block initial formulation (control) was: 8.2% cement, 45.9% sand, and 45.9% gravel. The cement was cured at room temperature for 28 days. Subsequently, the blocks were subjected to the characterization of physical, mechanical, and thermal properties. Coconut fibers presented a low percentage of extractives, with a low inhibition index (1.93%), reducing their effect on cement hardening. The increase in the content of quartzite incorporated provided a reduction in bulk density and an increase in porosity (from 11.7 to 16.0%) and water absorption after 24 h (from 7.0 to 8.5%). The compressive strength was reduced from 50% with the insertion of the quartzite. The quartzite and coconut fibers reduced the concrete's thermal conductivity, providing essential reflections for the performance of the blocks in terms of thermal comfort in built environments. Further, incorporating these materials provided the potential to obtain blocks with characteristics of resistance and offering possible thermal comfort, besides contributing as an option for a destination for these mineral and agro-industrial wastes.


Subject(s)
Cocos , Industrial Waste , Sand , Built Environment , Compressive Strength
5.
Environ Sci Pollut Res Int ; 30(16): 48270-48287, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36759406

ABSTRACT

Free formaldehyde is a carcinogen whose emission reduction in particleboard has been studied recently to mitigate this environmental and human health problem. One alternative to reduce the emission of formaldehyde in particleboards is by using adhesives produced from natural sources. Cardanol-formaldehyde is an environmentally friendly adhesive made with cashew nut liquid, a byproduct from the cashew chain. This work aimed to produce particleboard using cardanol-formaldehyde in place of urea. In addition, different proportions of bean straw wastes were used to replace pine wood. The combination of eco-friendly adhesive and lignocellulosic waste particles could result in a product that meets market demands while being environmentally nonaggressive. Cardanol-formaldehyde promoted a higher modulus of elasticity (MOE) (1172 MPa) and modulus of rupture (MOR) (4.39 MPa) about panels glued with urea-formaldehyde, which presented a MOE of 764 MPa and MOR of 2.45 MPa. Furthermore, the cardanol-formaldehyde adhesive promoted a 93% reduction in formaldehyde emission, with a reduction from 16.76 to 1.09 mg/100 g oven-dry board for particleboards produced with cardanol-formaldehyde, indicating potential as an adhesive in the particleboard industry.


Subject(s)
Anacardium , Wood , Humans , Adhesives , Formaldehyde , Urea
6.
Environ Sci Pollut Res Int ; 30(2): 4934-4948, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35978240

ABSTRACT

Specific kinds of enzymes have been used as an eco-friendly pre-treatment for mechanical extraction of cellulose nanofibrils (CNFs) from vegetal pulps. Another well-established pre-treatment is the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidation, which has gained considerable attention. Pre-treatments assist in fiber swelling, facilitating mechanical fibrillation, and reducing energy consumption; however, some of these methods are extremely expensive. This work aimed to evaluate the influence of enzymatic pre-treatment with endoglucanase on the energy consumption during mechanical fibrillation of cellulose pulps. Bleached pulps from Eucalyptus sp. and Pinus sp. were pre-treated with endoglucanase enzyme compared to TEMPO-meditated oxidation. Average diameters of CNFs pre-treated with enzymes were close to that found for TEMPO-oxidized nanofibrils (TOCNFs). Results showed that enzymatic pre-treatment did not significantly modify the pulp chemical and morphological characteristics with efficient stabilization of the CNFs suspension at higher supernatant turbidity. Energy consumption of pulps treated with endoglucanase enzymes was lower than that shown by pulps treated with TEMPO, reaching up to 58% of energy savings. The enzyme studied in the pulp treatment showed high efficiency in reducing energy consumption during mechanical fibrillation and production of films with high mechanical quality, being an eco-friendly option for pulp treatment.


Subject(s)
Cellulase , Cellulose , Oxidation-Reduction , Sodium Compounds , Hypochlorous Acid
7.
Environ Sci Pollut Res Int ; 29(44): 66422-66437, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35501446

ABSTRACT

The applicability of cellulose nanofibrils (CNFs) has received attention due to their attractive properties. This study proposes the functionalization of açai CNFs with copaiba oil and vegetal tannins to produce films with potential for packaging. Bio-based films were evaluated by vapor permeability, colorimetry, and mechanical strength. CNFs were produced by mechanical fibrillation, from suspensions of bleached açai fibers and commercial eucalipytus pulp. Moreover, copaiba oil and vegetal tannin were added to the CNFs to produce films/nanopapers by casting from both suspensions with concentrations of 1% (based on CNF dry mass). The bulk densities of the eucalyptus CNF films were higher (1.126-1.171 g cm-3) compared to the açai CNF ones. Films from eucalyptus and açai pulps containing copaiba oil and tannins presented higher Tonset and Tmax, respectively (312 and 370 °C). Films with açaí CNFs functionalized with copaiba oil and tannin showed the lowest permeability value (370 g day-1 m-2). Films produced with eucalyptus pulp, and eucalyptus pulp functionalized with copaiba oil highlighted by superior mechanical strength, achieving 133.8 and 121.4 MPa, respectively. The evaluation of colorimetry showed a greater tendency to yellowing for açai films, especially those functionalized with vegetal tannins. Besides the low cost, functionalized vegetal-based nanomaterials could have attractive properties, with potential for application as some kind of packaging, for transporting basic products, such as breads, flours, or products with low moisture content, enabling efficient utilization of forest wastes.


Subject(s)
Eucalyptus , Nanofibers , Oils, Volatile , Cellulose , Forests , Suspensions , Tannins
8.
Environ Sci Pollut Res Int ; 29(6): 8665-8683, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34490567

ABSTRACT

The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability, and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young's modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability, besides low cost, could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.


Subject(s)
Nanostructures , Cellulose , Lignin , Tensile Strength
9.
Article in English | MEDLINE | ID: mdl-33630266

ABSTRACT

The development of products from wastes such as plastic and lignocellulosic materials brings great advantages from the economic and sustainable point of view. The use of waste, previously destined for disposal, enables the changes in production patterns, and prevents major environmental problems. This research investigated the inclusion of different contents of cocoa almond husk on the properties of composites with recycled low-density polyethylene (LDPE) matrix. The composites were produced by extrusion process with proportions: 0%, 10%, 20%, 30%, and 40% of cocoa waste reinforcement in the polymer matrix. The density of the composites decreased (from 0.81 to 0.61 g/cm3) with the addition of the lignocellulosic waste in the matrix. The hygroscopicity was increased, however, at considerably low levels (0.17 to 2.68 %). There was a decrease in composite strength and elongation, becoming the material more rigid. The use of the cocoa waste for composites production is feasible to use since it can be adapted to the required application and still incorporate additives requested for specific purposes. This research demonstrated that is possible the combination of recycled low-density polyethylene and lignocellulosic wastes for the production of materials with high added value.

10.
Environ Sci Pollut Res Int ; 28(9): 11598-11617, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33128146

ABSTRACT

In the context of the circular bioeconomy and cleaner production, the incorporation of the by-products of plant biomass production in the bioenergy chain is fundamental. However, lignocellulosic wastes have properties that hinder their use for the production of biofuels. This study aims to evaluate how blends of lignocellulosic wastes improve the physical, chemical, and mechanical quality of pellets destined to the industrial sector, and to identify the challenges associated with the use of agroforestry biomass as raw material for pelletizing. Pellets were produced from blends of soybean wastes, sorghum wastes, pine needles, rice powder, Eucalyptus sawdust, and charcoal fines. Additionally, pure pellets composed of soybean wastes, sugarcane bagasse, and pine wood were evaluated. The effect of biomass type on the energy density, ash content, net heating value, and ultimate analysis was significant. The pellets produced with soybean wastes presented high contents of N (3.5-4.9%) and ashes (16.4-26.7%), besides low mechanical durability (≤ 96%), hindering its commercialization for industrial purposes. Pellets with sugarcane bagasse presented N (1.5%), S (0.03%), ashes (5.6%), mechanical durability (96.6%), and net heating value (15.1 MJ kg-1), suitable for industrial energy use in accordance with ISO 17225-6. The high N and ash contents and the low mechanical durability are the greatest challenges for the energy use of pellets produced from Brazilian agroforestry wastes.


Subject(s)
Biofuels , Lignin , Biomass , Brazil
11.
Waste Manag ; 118: 36-44, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32889232

ABSTRACT

This research proposed to investigate a possible destination for the cocoa waste as component in the core layer of Medium Density Particleboards (MDPs) and to evaluate the effect of the waste insertion on the physical-mechanical properties of the panel. The core layers of the MDPs were composed by different percentages of cocoa wastes (0, 25, 50, 75 and 100%) in combination with pine wood. The targeted density of the panels was pre-established in 0.7 g cm-3, bonded with urea-formaldehyde. The cocoa waste showed higher extractives content (34.8%) when compared with the pine wood (4.0%). The inclusion of the waste did not cause a significant difference in the moisture and bulk density of the panels; however, there was an increase in water absorption 24 h (71-105%) and thickness swelling 24 h (13-35%). Despite the values of the mechanical properties decreased in general, in low percentages, the cocoa waste does not prevent the use of the MDPs as furniture for internal environments. The results show that the cocoa waste has potential for being applied as raw material in the core layer of the MDP, in percentages up to 21%. The lignocellulosic wastes are promising alternatives for the achievement of the required current context of the sustainability and should be highlighted with research focused on their management for the development of added value materials.


Subject(s)
Industrial Waste , Wood , Brazil , Food
12.
Ciênc. agrotec., (Impr.) ; 41(2): 139-146, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-890612

ABSTRACT

ABSTRACT The wood panel industry is constantly growing, being necessary the innovation in technologies and raw materials to improve the quality of the final product. Considering the shortage and pressure to decrease the dependence of wood, there is an interest in other renewable materials such as agricultural wastes. Among these wastes, coffee parchment is one which deserves notoriety. An alternative use for coffee parchment could be for production of particleboard in association with wood particles. This study aimed to evaluate the feasibility of using coffee parchment for production of particleboard. The following percentages of wastes were used: 0, 10, 20, 30, 40 and 50% in association to eucalyptus wood. The panels were produced with 8% of urea formaldehyde (based on dry weight of particles). The pressing cycle consisted by: pre-pressing of 0.5 MPa for 10 minutes followed by pressing of 4.0 MPa, and temperature of 160° C for 15 minutes. The compaction ratio of particleboards produced using higher quantities of parchment improved the physical properties. The properties of Water Absorption (2 and 24 h) and Thickness Swelling (2 h) decreased with increasing percentage of coffee parchment. The Thickness Swelling (24 h) showed not significant effect with an increase of coffee waste. The Modulus of Elasticity for coffee parchment particleboards was in the range 646.49 ± 112.65 to 402.03 ± 66.24 MPa, while the Modulus of Rupture ranged from 8.18 ± 1.39 to 4.45 ± 0.75 MPa. The results showed that 10% of coffee parchment could be added for production of particleboards.


RESUMO A indústria de painéis de madeira vem em constante crescimento, sendo necessária a inovação em tecnologias e matéria-prima para melhorar a qualidade do produto final. Considerando a escassez e pressão na diminuição da dependência por madeira, existe um interesse em outros materiais renováveis, como os resíduos agrícolas. Entre esses resíduos, o pergaminho de café merece destaque. Uma alternativa para utilização do pergaminho de café poderia ser na produção de particulados, em associação com partículas de madeira. O objetivo deste trabalho foi avaliar a viabilidade de utilização do pergaminho de café para produção de aglomerados. As porcentagens de resíduo utilizadas foram: 0, 10, 20, 30, 40 e 50% em associação com madeira de eucalipto. Os painéis foram produzidos com 8% de uréia-formaldeído (base massa seca de partículas). O ciclo de prensagem consistiu de: pré-prensagem de 0,5 MPa por 10 minutos, seguido por prensagem de 4,0 MPa e temperatura de 160° C por 15 minutos. A razão de compactação dos painéis produzidos com maiores quantidades de pergaminho melhorou as propriedades físicas. As propriedades de absorção de água (2 e 24 h) e inchamento em espessura (2 h) diminuíram com o aumento da porcentagem de pergaminho de café. O inchamento em espessura (24 h) não apresentou diferenças significativas com o aumento de resíduo de café. O Módulo de Elasticidade dos painéis variou de 646,49 ± 112,65 até 402,03 ± 66,24 MPa, enquanto o Módulo de Ruptura variou de 8,18 ± 1,39 até 4,45 ± 0,75 MPa. Os resultados mostraram que até 10% de pergaminho de café poderia ser adicionados para a produção de painéis aglomerados.

SELECTION OF CITATIONS
SEARCH DETAIL
...