Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234513

ABSTRACT

We present a combined real and reciprocal space structural and microstructural characterization of CeO2 nanoparticles (NPs) exhibiting different crystallite sizes; ~3 nm CeO2 NPs were produced by an inverse micellae wet synthetic path and then annealed at different temperatures. X-ray total scattering data were analyzed by combining real-space-based Pair Distribution Function analysis and the reciprocal-space-based Debye Scattering Equation method with atomistic models. Subtle atomic-scale relaxations occur at the nanocrystal surface. The structural analysis was corroborated by ab initio DFT and force field calculations; micro-Raman and electron spin resonance added important insights to the NPs' defective structure. The combination of the above techniques suggests a core-shell like structure of ultrasmall NPs. These exhibit an expanded outer shell having a defective fluorite structure, while the inner shell is similar to the bulk structure. The presence of partially reduced O2-δ species testifies to the high surface activity of the NPs. On increasing the annealing temperature, the particle dimensions increase, limiting disorder as a consequence of the progressive surface-to-volume ratio reduction.

2.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365930

ABSTRACT

Here we report on the impact of reducing the crystalline size on the structural and magnetic properties of γ-Fe2O3 maghemite nanoparticles. A set of polycrystalline specimens with crystallite size ranging from ~2 to ~50 nm was obtained combining microwave plasma synthesis and commercial samples. Crystallite size was derived by electron microscopy and synchrotron powder diffraction, which was used also to investigate the crystallographic structure. The local atomic structure was inquired combining pair distribution function (PDF) and X-ray absorption spectroscopy (XAS). PDF revealed that reducing the crystal dimension induces the depletion of the amount of Fe tetrahedral sites. XAS confirmed significant bond distance expansion and a loose Fe-Fe connectivity between octahedral and tetrahedral sites. Molecular dynamics revealed important surface effects, whose implementation in PDF reproduces the first shells of experimental curves. The structural disorder affects the magnetic properties more and more with decreasing the nanoparticle size. In particular, the saturation magnetization reduces, revealing a spin canting effect. Moreover, a large effective magnetic anisotropy is measured at low temperature together with an exchange bias effect, a behavior that we related to the existence of a highly disordered glassy magnetic phase.

3.
Nanomaterials (Basel) ; 10(4)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316343

ABSTRACT

The determination of reversible phase transitions in the perovskite-type thermoelectric oxide Eu0.8Ca0.2TiO3-δ is fundamental, since structural changes largely affect the thermal and electrical transport properties. The phase transitions were characterized by heat capacity measurements, Rietveld refinements, and pair distribution function (PDF) analysis of the diffraction data to achieve information on the phase transition temperatures and order as well as structural changes on the local level and the long range. On the long-range scale, Eu0.8Ca0.2TiO3-δ showed a phase transition sequence during heating from cubic at 100 < T < 592 K to tetragonal and finally back to cubic at T > 846 K. The phase transition at T = 592 K (diffraction)/606 K (thermal analysis) was reversible with a very small thermal hysteresis of about 2 K. The local structure at 100 K was composed of a complex nanodomain arrangement of Amm2- and Pbnm-like local structures with different coherence lengths. Since in Eu0.8Ca0.2TiO3-δ the amount of Pbnm domains was too small to percolate, the competition of ferroelectrically distorted octahedra (Amm2 as in BaTiO3) and rigid, tilted octahedra (Pbnm as in CaTiO3) resulted in a cubic long-range structure at low temperatures.

4.
Front Chem ; 6: 526, 2018.
Article in English | MEDLINE | ID: mdl-30430105

ABSTRACT

The need for high efficiency energy production, conversion, storage and transport is serving as a robust guide for the development of new materials. Materials with physical-chemical properties matching specific functions in devices are produced by suitably tuning the crystallographic- defect- and micro-structure of the involved phases. In this review, we discuss the case of Rare Earth doped Ceria. Due to their high oxygen diffusion coefficient at temperatures higher than ~500°C, they are very promising materials for several applications such as electrolytes for Solid Oxide Fuel and Electrolytic Cells (SOFC and SOEC, respectively). Defects are integral part of the conduction process, hence of the final application. As the fluorite structure of ceria is capable of accommodating a high concentration of lattice defects, the characterization and comprehension of such complex and highly defective materials involve expertise spanning from computational chemistry, physical chemistry, catalysis, electrochemistry, microscopy, spectroscopy, and crystallography. Results coming from different experimental and computational techniques will be reviewed, showing that structure determination (at different scale length) plays a pivotal role bridging theoretical calculation and physical properties of these complex materials.

5.
Nanomaterials (Basel) ; 8(9)2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30135359

ABSTRACT

This work highlights the importance of the hydrophilicity of a catalyst's active sites on an oxygen reduction reaction (ORR) through an electrochemical and physico-chemical study on catalysts based on nitrogen-modified carbon doped with different metals (Fe, Cu, and a mixture of them). BET, X-ray Powder Diffraction (XRPD), micro-Raman, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and hydrophilicity measurements were performed. All synthesized catalysts are characterized not only by a porous structure, with the porosity distribution centered in the mesoporosity range, but also by the presence of carbon nanostructures. In iron-doped materials, these nanostructures are bamboo-like structures typical of nitrogen carbon nanotubes, which are better organized, in a larger amount, and longer than those in the copper-doped material. Electrochemical ORR results highlight that the presence of iron and nitrogen carbon nanotubes is beneficial to the electroactivity of these materials, but also that the hydrophilicity of the active site is an important parameter affecting electrocatalytic properties. The most active material contains a mixture of Fe and Cu.

6.
Inorg Chem ; 57(2): 879-891, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29280608

ABSTRACT

The structure evolution in the CeO2-Sm2O3 system is revisited by combining high resolution synchrotron powder diffraction with pair distribution function (PDF) to inquire about local, mesoscopic, and average structure. The CeO2 fluorite structure undergoes two phase transformations by Sm doping, first to a cubic (C-type) and then to a monoclinic (B-type) phase. Whereas the C to B-phase separation occurs completely and on a long-range scale, no miscibility gap is detected between fluorite and C-type phases. The transformation rather occurs by growth of C-type nanodomains embedded in the fluorite matrix, without any long-range phase separation. A side effect of this mechanism is the ordering of the oxygen vacancies, which is detrimental for the application of doped ceria as an electrolyte in fuel cells. The results are discussed in the framework of other Y and Gd dopants, and the relationship between nanostructuring and the above equilibria is also investigated.

7.
Phys Chem Chem Phys ; 19(21): 13469-13480, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28332675

ABSTRACT

A series of Ba1-xEuxTiO3-δ (0.1 ≤ x ≤ 0.9) phases with ∼40 nm particle size were synthesized via a Pechini method followed by annealing and sintering under a reducing atmosphere. The effects of Eu2+ substitution on the BaTiO3 crystal structure and the thermoelectric transport properties were systematically investigated. According to synchrotron X-ray diffraction data only cubic perovskite structures were observed. On the local scale below about 20 Å (equal to ∼5 unit cells) deviations from the cubic structure model (Pm3[combining macron]m) were detected by evaluation of the pair distribution function (PDF). These deviations cannot be explained by a simple symmetry breaking model like in EuTiO3-δ. The best fit was achieved in the space group Amm2 allowing for a movement of Ti and Ba/Eu along 〈110〉 of the parent unit cell as observed for BaTiO3. Density functional calculations delivered an insight into the electronic structure of Ba1-xEuxTiO3-δ. From the obtained density of states a significant reduction of the band gap by the presence of filled Eu2+ 4f states at the top of the valence band was observed. The physical property measurements revealed that barium-europium titanates exhibit n-type semiconducting behavior and at high temperature the electrical conductivity strongly depended on the Eu2+ content. Activation energies calculated from the electrical conductivity and Seebeck coefficient data indicate that at high temperatures (800 K < T < 1123 K) the conduction mechanism of Ba1-xEuxTiO3-δ (0.1 ≤ x ≤ 0.9) is a polaron hopping when 0 < x ≤ 0.6 and is a thermally activated process when 0.6 < x < 1. Besides, the thermal conductivity increases with increasing Eu2+ concentration. Due to a remarkable improvement of the power factor, Ba0.1Eu0.9TiO3-δ showed a ZT value of 0.24 at 1123 K.

8.
IUCrJ ; 2(Pt 5): 511-22, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26306193

ABSTRACT

A new hierarchical approach is presented for elucidating the structural disorder in Ce1-x Gd x O2-x/2 solid solutions on different scale lengths. The primary goal of this investigation is to shed light on the relations between the short-range and the average structure of these materials via an analysis of disorder on the mesocopic scale. Real-space (pair distribution function) and reciprocal-space (Rietveld refinement and microstructure probing) analysis of X-ray powder diffraction data and electron spin resonance (ESR) investigations were carried out following this approach. On the local scale, Gd- and Ce-rich droplets (i.e. small regions a few ångströms wide) form, exhibiting either a distorted fluorite (CeO2) or a C-type (Gd2O3) structure in the whole compositional range. These droplets can then form C-type nanodomains which, for Gd concentrations x Gd ≤ 0.25, are embedded in the fluorite matrix. At the site percolation threshold p C for a cubic lattice (x Gd = p C ≃ 0.311), C-type nanodomains percolate inside each crystallite and a structural phase transformation is observed. When this occurs, the peak-to-peak ESR line width ΔH pp shows a step-like behaviour, which can be associated with the increase in Gd-Gd dipolar interactions. A general crystallographic rationale is presented to explain the fluorite-to-C-type phase transformation. The approach shown here could be adopted more generally in the analysis of disorder in other highly doped materials.

9.
Phys Chem Chem Phys ; 15(39): 16779-87, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23995512

ABSTRACT

Methods and models describing oxygen diffusion and desorption in oxides have been developed for slightly defective and well crystallised bulky materials. Does nanostructuring change the mechanism of oxygen mobility? In such a case, models should be properly checked and adapted to take into account new material properties. In order to do so, temperature programmed oxygen desorption and thermogravimetric analysis, either in isothermal or ramp mode, have been used to investigate some nanostructured La1-xAxMnO3±Î´ samples (A = Sr and Ce, 20-60 nm particle size) with perovskite-like structure. The experimental data have been elaborated by means of different models to define a set of kinetic parameters able to describe oxygen release properties and oxygen diffusion through the bulk. Different rate-determining steps have been identified, depending on the temperature range and oxygen depletion of the material. In particular, oxygen diffusion was shown to be rate-limiting at low temperature and at low defect concentration, whereas oxygen recombination at the surface seems to be the rate-controlling step at high temperature. However, the oxygen recombination step is characterised by an activation energy much lower than that for diffusion. In the present paper oxygen transport in nanosized materials is quantified by making use of widely diffused experimental techniques and by critically adapting to nanoparticles suitably chosen models developed for bulk materials.

10.
Phys Chem Chem Phys ; 15(22): 8495-505, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23403753

ABSTRACT

Doped ceria materials are widely studied for their application in solid oxide fuel cell devices. In this work we report on the average and local structure evolution of La-doped ceria (Ce(1-x)La(x)O(2-x/2), x = 0.25) under fuel cells' operating conditions. The effect of doping on the average structure is investigated using conventional Rietveld analysis of neutron powder diffraction data. The extent of disorder as well as the local structure evolution at high temperature are investigated by employing very hard X-rays under both air and reducing atmosphere.

11.
Inorg Chem ; 51(15): 8433-40, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22799746

ABSTRACT

The physical-chemical properties of some nanostructured perovskite-like catalysts of general formula La(1-x)M(x)MnO(3+δ) (M = Ce, Sr) have been investigated, in particular by using the electron paramagnetic resonance (EPR) technique. We show that the interplay between the -O-Mn(3+)-O-Mn(4+)-O- electron double-exchange and the electron mobility is strictly dependent on the dopant nature and the annealing conditions in air. A relationship between the observed properties of these samples and their activity in the methane flameless catalytic combustion is proposed.

12.
J Phys Chem A ; 116(25): 6497-504, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22280059

ABSTRACT

In this work, IrO(2)-based powders are screened by cyclic voltammetry for the determination of the electrochemical active sites and for the qualitative evaluation of the iridium atoms speciation. All results are obtained using a cavity-microelectrode as powder holder, thus exploiting the features of this innovative tool, whose best potentialities have been recently introduced by our group. All the studied materials have been prepared by the sol-gel technique and differ in calcination temperature and method of mixing the metal oxide precursors. The electrochemical results are complemented with the information obtained by X-ray absorption spectroscopy (XAS), that give insights on the local structure of each selected sample, confirming the trends found by cyclic voltammetry and give new and unexpected insights on the powder structural features.

13.
Inorg Chem ; 50(8): 3757-65, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21434615

ABSTRACT

We present here a X-ray absorption spectroscopy (XAS) investigation on the local chemical order and electronic structure of Cs and Ba, promoters of the Ru/C catalysts for ammonia synthesis that attracted interest because of highly increased productivity. The role of the promoters is still largely unclear, although indirect evidence for Cs partial reduction has been obtained by this and other groups. Our XAS analysis with in situ H(2) reduction directly supports the partial Cs reduction in the promoted Ru/C catalysts, depending on the presence of Ru and on the graphitization degree of the support. Higher coordination of Ba was observed with respect to Cs in the reduced samples, without evidence of heavy atoms (Ru, Cs, and Ba) in the surroundings. Because of the strong electropositive nature of Cs, direct experimental evidence of its partial reduction is of outstanding significance also for other applications.

14.
J Phys Chem B ; 111(21): 5976-83, 2007 May 31.
Article in English | MEDLINE | ID: mdl-17489623

ABSTRACT

The long-range and short-range structures of KMgxCu1-xF3 (0 < x < 1) have been investigated by means of XRPD and EPR. Two different solid solutions are present, based on the structure of KMgF3 (for x > 0.42) and of KCuF3 (for x < 0.26), respectively, and they are separated by a biphasic zone. Positional disorder is induced by doping due to the different Cu and Mg environments. In fact, the EPR measurements have shown that the Cu environment is isotropic for x > 0.8. It shows axial symmetry for 0.45 < x < 0.70 and orthorhombic symmetry for x = 0.43. For x > 0.42, the crystallographic structure is cubic, and in absence of local disorder, a fully isotropic octahedral undistorted environment is expected for Cu. In the tetragonal structure, collective magnetic interactions arise, and a progressive EPR signal symmetrization is observed due to anisotropic exchange and to Dzialoshinsky-Moriya antisymmetric exchange processes. The mixing of triplet and singlet states induced by the above exchange mechanisms leads to the conclusion that the orbital order is melt in the x = 0.1 sample, for which the cooperative Jahn-Teller distortion is still active and the 3D magnetic order is still antiferromagnetic, as in KCuF3.

15.
J Phys Chem B ; 109(47): 22112-9, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16853877

ABSTRACT

A sol-gel reaction starting from silicon and zirconium alkoxides, in water-ethanol mixtures, was employed to obtain vanadium-doped zirconium silicate powders (zircon). The reactions were performed by modulating both (a) the amount of the vanadium salt in the starting mixture and also (b) the amount of mineralizer (NaF). The products of the sol-gel reaction were calcined at 600, 800, 1000, and 1200 degrees C. The samples were characterized by X-ray powder diffraction (XRPD), electron paramagnetic resonance spectroscopy (EPR), scanning electron microscopy (SEM), X-ray absorption near-edge spectroscopy (XANES), and diffuse UV-vis-near-IR reflectance spectroscopy. Results from the structural, morphological, and optical characterization are examined and cross-compared to produce a consistent picture of the key factors leading to the formation, growth, and optical properties of the reaction products.

SELECTION OF CITATIONS
SEARCH DETAIL
...