Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Microb Sci ; 2: 100060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841350

ABSTRACT

The microorganisms are found in the environment, forming sessile communities embedded in an extracellular matrix of their own production, called biofilm. These communities have a great relevance in the clinical context, since they are associated with infections caused by biofilm in medical implants, such as urinary catheters. The development of biofilms is a complex process where a great diversity of genes participate. The present work is based on the study of genes related to iron metabolism and its implication in the development of P. mirabilis biofilms and pathogenicity. For this study, two mutant strains defective in biofilm formation were selected, generated by the interruption of genes that encoded non-heme ferritin and TonB-dependent receptor. The mutations influence on the development of the biofilm was evaluated by different approaches. The complexity of the biofilm was analyzed using Confocal Laser Microscopy and image analysis. The mutants infectivity potential was assessed in two experimental mice models of urinary tract infection. The results obtained in the present work show us the role of the ferritin and a TonB-associated porin protein over the initial and later stages of biofilm development. Moreover, in the ascending UTI mouse model, both mutants failed to colonize the urinary tract. In CAUTI models, ferritin mutant damaged the bladder similarly to wild type but the Ton-B mutant was unable to generate infection in the urinary tract. The results obtained in the present work confirm the relevant role that iron metabolism genes have in P. mirabilis biofilm development and for infection in the urinary tract.

2.
Genome Announc ; 4(3)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-27340058

ABSTRACT

Here, we report the genome sequence of Proteus mirabilis Pr2921, a uropathogenic bacterium that can cause severe complicated urinary tract infections. After gene annotation, we identified two additional copies of ucaA, one of the most studied fimbrial protein genes, and other fimbriae related-proteins that are not present in P. mirabilis HI4320.

3.
J Microbiol Methods ; 87(2): 234-40, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21864585

ABSTRACT

This work studies the development of the 3D architecture of batch culture P. mirabilis biofilms on the basis of morpho-topological descriptors calculated from confocal laser scanning microscopy (CLSM) stacks with image processing routines. A precise architectonical understanding of biofilm organization on a morpho-topological level is necessary to understand emergent interactions with the environment and the appearance of functionally different progeny swarmer cells. P. mirabilis biofilms were grown on glass coverslips for seven days on LB broth and subjected to in situ immunofluorescence. Confocal image stacks were deconvolved prior to segmentation of regions of interest (ROI) that identify individual bacteria and extracellular material, followed by 3D reconstruction and calculation of different morpho-topological key descriptors. Results showed that P. mirabilis biofilm formation followed a five stage process: (i) reversible adhesion to the surface characterized by slow growth, presence of elongated bacteria, and absence of extracellular material, (ii) irreversible bacterial adhesion concomitant to decreasing elongation, and the beginning of extracellular polymer production, (iii) accelerated bacterial growth concomitant to continuously decreasing elongation and halting of extracellular polymer production, (iv) maturation of biofilm defined by maximum bacterial density, volume, minimum elongation, maximum extracellular material, and highest compaction, and (v) decreased bacterial density and extracellular material through detachment and dispersion. Swarmer cells do not play a role in P. mirabilis biofilm formation under the applied conditions. Our approach sets the basis for future studies of 3D biofilm architecture using dynamic in vivo models and different environmental conditions that assess clinical impacts of P. mirabilis biofilm.


Subject(s)
Biofilms , Microscopy, Confocal/methods , Proteus Infections/microbiology , Proteus mirabilis/physiology , Urinary Tract Infections/microbiology , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Proteus mirabilis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...