Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Radiother Oncol ; 194: 110197, 2024 May.
Article in English | MEDLINE | ID: mdl-38447870

ABSTRACT

PURPOSE: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS: Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above âˆ¼ 50 Gy with an FMF of âˆ¼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION: The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.


Subject(s)
Dose-Response Relationship, Radiation , Electrons , Embryo, Nonmammalian , Zebrafish , Animals , Zebrafish/embryology , Electrons/therapeutic use , Embryo, Nonmammalian/radiation effects , Proton Therapy/methods , Radiotherapy Dosage , Protons , Relative Biological Effectiveness
2.
Phys Med Biol ; 69(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38537301

ABSTRACT

Thein vivoevolution of radiotherapy necessitates innovative platforms for preclinical investigation, bridging the gap between bench research and clinical applications. Understanding the nuances of radiation response, specifically tailored to proton and photon therapies, is critical for optimizing treatment outcomes. Within this context, preclinicalin vivoexperimental setups incorporating image guidance for both photon and proton therapies are pivotal, enabling the translation of findings from small animal models to clinical settings. TheSAPPHIREproject represents a milestone in this pursuit, presenting the installation of the small animal radiation therapy integrated beamline (SmART+ IB, Precision X-Ray Inc., Madison, Connecticut, USA) designed for preclinical image-guided proton and photon therapy experiments at University Proton Therapy Dresden. Through Monte Carlo simulations, low-dose on-site cone beam computed tomography imaging and quality assurance alignment protocols, the project ensures the safe and precise application of radiation, crucial for replicating clinical scenarios in small animal models. The creation of Hounsfield lookup tables and comprehensive proton and photon beam characterizations within this system enable accurate dose calculations, allowing for targeted and controlled comparison experiments. By integrating these capabilities,SAPPHIREbridges preclinical investigations and potential clinical applications, offering a platform for translational radiobiology research and cancer therapy advancements.


Subject(s)
Photons , Proton Therapy , Radiotherapy, Image-Guided , Photons/therapeutic use , Animals , Radiotherapy, Image-Guided/methods , Proton Therapy/methods , Monte Carlo Method , Protons , Mice
3.
Sci Rep ; 13(1): 20611, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996453

ABSTRACT

The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.


Subject(s)
Neoplasms , Protons , Animals , Humans , Radiotherapy Dosage , Zebrafish , Neoplasms/radiotherapy , Radiobiology
5.
Front Oncol ; 12: 982417, 2022.
Article in English | MEDLINE | ID: mdl-36419890

ABSTRACT

Background and purpose: Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. Material and methods: A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. Results: The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. Conclusion: Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.

6.
Radiother Oncol ; 175: 193-196, 2022 10.
Article in English | MEDLINE | ID: mdl-36030933

ABSTRACT

The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.


Subject(s)
Oxygen , Water , Humans , Radiotherapy Dosage
7.
Radiother Oncol ; 173: 49-54, 2022 08.
Article in English | MEDLINE | ID: mdl-35661675

ABSTRACT

BACKGROUND AND PURPOSE: Continuing recent experiments at the research electron accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf the influence of beam pulse structure on the Flash effect was investigated. MATERIALS AND METHODS: The proton beam pulse structure of an isochronous cyclotron (UHDRiso) and a synchrocyclotron (UHDRsynchro) was mimicked at ELBE by quasi-continuous electron bunches at 13 MHz delivering mean dose rates of 287 Gy/s and 177 Gy/s and bunch dose rates of 106Gy/s and 109 Gy/s, respectively. For UHDRsynchro, 40 ms macro pulses at a frequency of 25 Hz superimposed the bunch delivery. For comparison, a maximum beam intensity (2.5 × 105 Gy/s mean and ∼109 Gy/s bunch dose rate) and a reference irradiation (of ∼8 Gy/min mean dose rate) were applied. Radiation induced changes were assessed in zebrafish embryos over four days post irradiation. RESULTS: Relative to the reference a significant protecting Flash effect was observed for all electron beam pulse regimes with less severe damage the higher the mean dose rate of the electron beam. Accordingly, the macro pulsing induced prolongation of treatment time at UHDRsynchro regime reduces the protecting effect compared to the maximum regime delivered at same bunch but higher mean dose rate. The Flash effect of the UHDRiso regime was confirmed at a clinical isochronous cyclotron comparing the damage induced by proton beams delivered at 300 Gy/s and ∼9 Gy/min. CONCLUSION: The recent findings indicate that the mean dose rate or treatment time are decisive for the normal tissue protecting Flash effect in zebrafish embryo.


Subject(s)
Protons , Zebrafish , Animals , Electrons , Radiotherapy Dosage
8.
Radiother Oncol ; 158: 7-12, 2021 05.
Article in English | MEDLINE | ID: mdl-33587970

ABSTRACT

BACKGROUND AND PURPOSE: In consequence of a previous study, where no protecting proton Flash effect was found for zebrafish embryos, potential reasons and requirements for inducing a Flash effect should be investigated with higher pulse dose rate and partial oxygen pressure (pO2) as relevant parameters. MATERIALS AND METHODS: The experiments were performed at the research electron accelerator ELBE, whose variable pulse structure enables dose delivery as electron Flash and quasi-continuously (reference irradiation). Zebrafish embryos were irradiated with ~26 Gy either continuously at a dose rate of ~6.7 Gy/min (reference) or by 1441 electron pulses within 111 µs at a pulse dose rate of 109 Gy/s and a mean dose rate of 105Gy/s, respectively. Using the OxyLite system to measure the pO2 a low- (pO2 ≤ 5 mmHg) and a high-pO2 group were defined on basis of the oxygen depletion kinetics in sealed embryo samples. RESULTS: A protective Flash effect was seen for most endpoints ranging from 4 % less reduction in embryo length to about 20-25% less embryos with spinal curvature and pericardial edema, relative to reference irradiation. The reduction of pO2 below atmospheric levels (148 mmHg) resulted in higher protection, which was however more pronounced in the low-pO2 group. CONCLUSION: The Flash experiment at ELBE showed that the zebrafish embryo model is appropriate for studying the radiobiological response of high dose rate irradiation. The applied high pulse dose rate was confirmed as important beam parameter as well as the pivotal role of pO2 during irradiation.


Subject(s)
Electrons , Zebrafish , Animals , Oxygen , Protons
9.
Anticancer Res ; 40(11): 6123-6135, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33109550

ABSTRACT

BACKGROUND/AIM: The importance of hadron therapy in the cancer management is growing. We aimed to refine the biological effect detection using a vertebrate model. MATERIALS AND METHODS: Embryos at 24 and 72 h postfertilization were irradiated at the entrance plateau and the mid spread-out Bragg peak of a 150 MeV proton beam and with reference photons. Radiation-induced DNA double-strand breaks (DSB) and histopathological changes of the eye, muscles and brain were evaluated; deterioration of specific organs (eye, yolk sac, body) was measured. RESULTS: More and longer-lasting DSBs occurred in eye and muscle cells due to proton versus photon beams, albeit in different numbers. Edema, necrosis and tissue disorganization, (especially in the eye) were observed. Dose-dependent morphological deteriorations were detected at ≥10 Gy dose levels, with relative biological effectiveness between 0.99±0.07 (length) and 1.12±0.19 (eye). CONCLUSION: Quantitative assessment of radiation induced changes in zebrafish embryos proved to be beneficial for the radiobiological characterization of proton beams.


Subject(s)
Photons , Protons , Zebrafish/physiology , Animals , Brain/radiation effects , DNA Damage , Disease Models, Animal , Dose-Response Relationship, Radiation , Embryo, Nonmammalian/radiation effects , Eye/pathology , Eye/radiation effects , Kinetics , Organ Size/radiation effects , Relative Biological Effectiveness , Yolk Sac/pathology , Yolk Sac/radiation effects , Zebrafish/embryology
10.
Radiother Oncol ; 146: 205-212, 2020 05.
Article in English | MEDLINE | ID: mdl-32222488

ABSTRACT

BACKGROUND AND PURPOSE: Proton radiotherapy offers the potential to reduce normal tissue toxicity. However, clinical safety margins, range uncertainties, and varying relative biological effectiveness (RBE) may result in a critical dose in tumor-surrounding normal tissue. To assess potential adverse effects in preclinical studies, image-guided proton mouse brain irradiation and analysis of DNA damage repair was established. MATERIAL AND METHODS: We designed and characterized a setup to shape proton beams with 7 mm range in water and 3 mm in diameter and commissioned a Monte Carlo model for in vivo dose simulation. Cone-beam computed tomography and orthogonal X-ray imaging were used to delineate the right hippocampus and position the mice. The brains of three C3H/HeNRj mice were irradiated with 8 Gy and excised 30 min later. Initial DNA double-strand breaks were visualized by staining brain sections for cell nuclei and γH2AX. Imaged sections were analyzed with an automated and validated processing pipeline to provide a quantitative, spatially resolved radiation damage indicator. RESULTS: The analyzed DNA damage pattern clearly visualized the radiation effect in the mouse brains and could be mapped to the simulated dose distribution. The proton beam passed the right hippocampus and stopped in the central brain region for all evaluated mice. CONCLUSION: We established image-guided proton irradiation of mouse brains. The clinically oriented workflow facilitates (back-) translational studies. Geometric accuracy, detailed Monte Carlo dose simulations, and cell-based assessment enable a biologically and spatially resolved analysis of radiation response and RBE.


Subject(s)
Proton Therapy , Animals , Brain , Mice , Mice, Inbred C3H , Monte Carlo Method , Protons , Relative Biological Effectiveness
11.
Biomed Phys Eng Express ; 6(3): 037003, 2020 04 22.
Article in English | MEDLINE | ID: mdl-33438682

ABSTRACT

Preclinical imaging and irradiation yields valuable insights into clinically relevant research topics. While complementary imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) can be combined within single devices, this is technically demanding and cost-intensive. Similarly, bedding and setup solutions are often specific to certain devices and research questions. We present a bedding platform for mice that is compatible with various preclinical imaging modalities (combined PET/MRI, cone beam CT) and irradiation with photons and protons. It consists of a 3D-printed bedding unit (acrylonitrile butadiene styrene, ABS) holding the animal and features an inhalation anesthesia mask, jaw fixation, ear pins, and immobilization for the hind leg. It can be embedded on mounting adaptors for multi-modal imaging and into a transport box (polymethyl methacrylate, PMMA) for experiments outside dedicated animal facilities while maintaining the animal's hygiene status. A vital support unit provides heating, inhalation anesthesia, and a respiration monitor. We dosimetrically evaluated used materials in order to assess their interaction with incident irradiation. Proof-of-concept multi-modal imaging protocols were used on phantoms and mice. The measured attenuation of the bedding unit for 40/60/80/200 kV X-rays was less than 3%. The measured stopping-power-ratio of ABS was 0.951, the combined water-equivalent thickness of bedding unit and transport box was 4.2 mm for proton energies of 150 MeV and 200 MeV. Proof-of-concept imaging showed no loss of image quality. Imaging data of individual mice from different imaging modalities could be aligned rigidly. The presented bed aims to provide a platform for experiments related to both multi-modal imaging and irradiation, thus offering the possibility for image-guided irradiation which relies on precise imaging and positioning. The usage as a self-contained, stand-alone unit outside dedicated animal facilities represents an advantage over setups designed for specific devices.


Subject(s)
Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Radiometry , Radiotherapy/methods , Animals , Bedding and Linens , Electric Conductivity , Equipment Design , Mice , Phantoms, Imaging , Photons , Proton Therapy/instrumentation , Radiography , Radiotherapy, Image-Guided/instrumentation , X-Rays
12.
Radiother Oncol ; 139: 46-50, 2019 10.
Article in English | MEDLINE | ID: mdl-31266652

ABSTRACT

BACKGROUND AND PURPOSE: Motivated by first animal trials showing the normal tissue protecting effect of electron and photon Flash irradiation, i.e. at mean dose rates of 100 Gy/s and higher, relative to conventional beam delivery over minutes the feasibility of proton Flash should be assessed. MATERIALS AND METHODS: A setup and beam parameter settings for the treatment of zebrafish embryo with proton Flash and proton beams of conventional dose rate were established at the University Proton Therapy Dresden. Zebrafish embryos were treated with graded doses and the differential effect on embryonic survival and the induction of morphological malformations was followed for up to four days after irradiation. RESULTS: Beam parameters for the realization of proton Flash were set and tested with respect to controlled dose delivery to biological samples. Analyzing the dose dependent embryonic survival and the rate of spinal curvature as one type of developmental abnormality, no significant influence of proton dose rate was revealed. For the rate of pericardial edema as acute radiation effect, a significant difference (p < 0.05) between proton Flash and protons delivered at conventional dose rate of 5 Gy/min was observed for one dose point only. CONCLUSION: The feasibility of Flash proton irradiation was successfully shown, whereas more experiments are required to confirm the presence or absence of a protecting effect and to figure out the limits and requirements for the Flash effect.


Subject(s)
Embryo, Nonmammalian/radiation effects , Proton Therapy/methods , Animals , Feasibility Studies , Radiotherapy Dosage , Zebrafish/embryology
13.
PLoS One ; 13(11): e0206879, 2018.
Article in English | MEDLINE | ID: mdl-30408095

ABSTRACT

The increasing use of proton radiotherapy during the last decade and the rising number of long-term survivors has given rise to a vital discussion on potential effects on normal tissue. So far, deviations from clinically applied generic RBE (relative biological effectiveness) of 1.1 were only obtained by in vitro studies, whereas indications from in vivo trials and clinical studies are rare. In the present work, wildtype zebrafish embryos (Danio rerio) were used to characterize the effects of plateau and mid-SOBP (spread-out Bragg peak) proton radiation relative to that induced by clinical MV photon beam reference. Based on embryonic survival data, RBE values of 1.13 ± 0.08 and of 1.20 ± 0.04 were determined four days after irradiations with 20 Gy plateau and SOBP protons relative to 6 MV photon beams. These RBE values were confirmed by relating the rates of embryos with morphological abnormalities for the respective radiation qualities and doses. Besides survival, the rate of spine bending, as one type of developmental abnormality, and of pericardial edema, as an example for acute radiation effects, were assessed. The results revealed that independent on radiation quality both rates increased with time approaching almost 100% at the 4th day post irradiation with doses higher than 15 Gy. To sum up, the applicability of the zebrafish embryo as a robust and simple alternative model for in vivo characterization of radiobiological effects in normal tissue was validated and the obtained RBE values are comparable to previous finding in animal trials.


Subject(s)
Embryo, Nonmammalian/radiation effects , Proton Therapy/adverse effects , Protons/adverse effects , Relative Biological Effectiveness , Animals , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Humans , Zebrafish
14.
Int J Part Ther ; 5(1): 172-182, 2018.
Article in English | MEDLINE | ID: mdl-31773028

ABSTRACT

PURPOSE: In order to take full advantage of proton radiotherapy, the biological effect of protons in normal and tumor tissue should be investigated and understood in detail. The ongoing discussion on variable relative biological effectiveness along the proton depth dose distribution (eg, Paganetti 2015), and also the administration of concomitant treatments, demands dedicated in vitro trials that prepare the translation into the clinics. Therefore, a setup for radiobiological studies and the corresponding dosimetry should be established that enables in vitro experiments at a horizontal proton beam and a clinical 6 MV photon linear accelerator (Linac) as reference. METHODS: The experimental proton beam at the University Proton Therapy Dresden is characterized by high beam availability and reliability throughout the day in parallel to patient treatment. For cell irradiation, a homogeneous 10 × 10 cm2 proton field with an optional spread-out Bragg-peak can be formed. A water-filled phantom was installed that allows for precise positioning of different sample geometries along the proton path. RESULTS: Depth-dose profiles within the phantom and dose homogeneity over different cell samples were characterized for the proton beam and the photon reference source. A daily quality assurance protocol was implemented that provides absolute dose information required for significant and reproducible in vitro experiments. Cell survival test experiments were performed to demonstrate the feasibility of such experiments. CONCLUSION: In the experimental room of the University Proton Therapy Dresden, clinically relevant conditions for proton in vitro experiments have been realized. The established cell phantom and dosimetry facilitate irradiation in an aqueous environment and are transferable to other proton, photon and ion beam facilities. Precise positioning and easy exchange of cell samples, monitor unit-based dose delivery, and high beam availability allow for systematic in vitro experiments. The close vicinity to the radiotherapy and radiobiology departments provides access to clinical linacs and the interdisciplinary basis for further translational steps.

15.
Radiat Environ Biophys ; 55(3): 381-91, 2016 08.
Article in English | MEDLINE | ID: mdl-27193178

ABSTRACT

Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.


Subject(s)
Electrons , Lasers , Particle Accelerators , Cell Line , DNA Breaks, Double-Stranded , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Radiation Dosage , Relative Biological Effectiveness
16.
Int J Radiat Biol ; 91(8): 643-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25968557

ABSTRACT

PURPOSE: In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. MATERIALS AND METHODS: The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. RESULTS: The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. CONCLUSIONS: The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.


Subject(s)
Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/physiopathology , Electrons , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Humans , Radiation Dosage , Radiation Tolerance/radiation effects
17.
Radiat Environ Biophys ; 54(2): 155-66, 2015 May.
Article in English | MEDLINE | ID: mdl-25600561

ABSTRACT

The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.


Subject(s)
Electrons/therapeutic use , Lasers , Particle Accelerators , Radiotherapy/instrumentation , Animals , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Transformation, Neoplastic , Dose-Response Relationship, Radiation , Female , Humans , Male , Mice , Radiometry
18.
Arzneimittelforschung ; 56(3): 212-21, 2006.
Article in English | MEDLINE | ID: mdl-16618014

ABSTRACT

The naphthodiantrones hypericin and pseudohypericin, ingredients of hypericum extracts, are known as potent photosensitizers that may cause phototoxic effects in grazing animals after excessive ingestion of hypericum species and in some cases in higher concentrations of hypericum extracts oder pure hypericin in humans as well. Therefore, the objective of the present studies was to investigate the effect of two different hypericum extracts (STW 3, STW 3-VI) on photosensitivity with respect to minimal erythema dose (MED) after 14 days treatment. Both open, multiple-dose, one-phase studies were conducted in 20 healthy men, receiving one tablet per day. MED values were determined prior to hypericum extract administration (baseline) and after 14 days treatment using an erythem tester emitting a light very similar to sun light (main emission spectrum: 285-350 nm). Skin reactions with respect to MED were evaluated 12 h, 24 h (primary endpoint), 48 h and 7 days after irradiation. All volunteers reached steady-state of hypericin/pseudohypericin plasma concentrations before study day 14, when the irradiation under treatment conditions took place. In all subjects MED was measurable under baseline and under hypericum treatment conditions. With respect to the primary endpoint, in both studies, mean MED (24 h) were not significantly different between baseline and after 14 days hypericum treatment. However, individually photosensitivity of the skin could increase under treatment conditions, just as well photosensitivity could decrease or remain unchanged. There were no clinically relevant changes in the laboratory parameters, the vital signs, physical findings and other observations related to safety during the examinations. In one study (STW 3), two adverse events were reported, both described as hypersensitivity to light in mild Intensity. The two studies showed that treatment with the two hypericum extracts under steady state and under prescribed conditions were safe medications without significant increases of photosensitivity.


Subject(s)
Hypericum/adverse effects , Hypersensitivity/etiology , Adolescent , Adult , Anthracenes , Erythema/chemically induced , Erythema/pathology , Humans , Hypericum/chemistry , Light , Male , Middle Aged , Perylene/analogs & derivatives , Perylene/blood , Plant Extracts/administration & dosage , Plant Extracts/adverse effects , Skin/pathology
19.
Vision Res ; 46(16): 2608-14, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16530245

ABSTRACT

The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.


Subject(s)
Convergence, Ocular/physiology , Pattern Recognition, Visual/physiology , Vision, Monocular/physiology , Eye Movements/physiology , Humans , Motion Perception/physiology , Photic Stimulation/methods , Psychophysics , Vision Disparity/physiology , Vision, Binocular/physiology
20.
Arzneimittelforschung ; 55(10): 561-8, 2005.
Article in English | MEDLINE | ID: mdl-16294501

ABSTRACT

Hypericins, hyperforin and flavonoids are discussed as the main components contributing to the antidepressant action of St. John's wort (Hypericum perforatum). Therefore, the objective of the two open phase I clinical trials was to obtain pharmacokinetic data of these constituents from a hypericum extract containing tablet: hypericin, pseudohypericin, hyperforin, the flavonoid aglycone quercetin, and its methylated form isorhamnetin. Each trial included 18 healthy male volunteers who received the test preparation, containing 900 mg dry extract of St John's wort (STW 3-VI, Laif 900), either as a single oral dose or as a multiple once daily dose over a period of 14 days. Concentration/time curves were determined for the five constituents, for 48 h after single dosing and for 24 h on day 14 at the end of 2 weeks of continuous daily dosing. After single dose intake, the key pharmacokinetic parameters were determined as follows: Hypericin: Area under the curve (AUC(0-infinity)) = 78.33 h x ng/ml, maximum plasma concentration (Cmax) = 3.8 ng/ml, time to reach Cmax (tmax) = 7.9 h, and elimination half-life (t1/2) = 18.71 h; pseudohypericin: AUC(0-infinity) = 97.28 h x ng/ml, Cmax = 10.2 ng/ml, tmax = 2.7 h, t1/2 = 17.19 h; hyperforin: AUC(0-infinity) = 1550.4 h x ng/ml, Cmax = 122.0 ng/ml, tmax = 4.5 h, t1/2 = 17.47 h. Quercetin and isorhamnetin showed two peaks of maximum plasma concentration separated by about 3-3.5 h. Quercetin: AUC(0-infinity) = 417.38 h x ng/ml, Cmax (1) = 89.5 ng/ml, tmax (1) = 1.0 h, Cma (2) = 79.1 ng/ml, tmax (2) = 4.4 h, t1/2 = 2.6 h; isorhamnetin: AUC(0-infinity) = 155.72 h x ng/ml, Cmax (1) = 12.5 ng/ml, tmax (1) = 1.4 h, Cmax (2) = 14.6 ng/ml, tmax (2) = 4.5 h, t1/2 = 5.61 h. Under steady state conditions reached during multiple dose administration similar results were obtained. Further pharmacokinetic characteristics calculated from the obtained data were the mean residence time (MRT), the lag-time, the peak-trough fluctuation (PTF), the lowest observed plasma concentration (Cmin), and the average plasma concentration (Cav). The data obtained for the five consitituents generally corresponded well with values previously published. The trial preparation was well tolerated.


Subject(s)
Flavonols/pharmacokinetics , Hypericum/chemistry , Perylene/analogs & derivatives , Phloroglucinol/analogs & derivatives , Quercetin/pharmacokinetics , Terpenes/pharmacokinetics , Adolescent , Adult , Anthracenes , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/adverse effects , Bridged Bicyclo Compounds/pharmacokinetics , Flavonols/administration & dosage , Flavonols/adverse effects , Humans , Male , Middle Aged , Perylene/administration & dosage , Perylene/adverse effects , Perylene/pharmacokinetics , Phloroglucinol/administration & dosage , Phloroglucinol/adverse effects , Phloroglucinol/pharmacokinetics , Plant Extracts/adverse effects , Plant Extracts/analysis , Plant Extracts/pharmacokinetics , Quercetin/administration & dosage , Quercetin/adverse effects , Tablets , Terpenes/administration & dosage , Terpenes/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...