Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 4(10): 101200, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37734378

ABSTRACT

Targeted therapies are effective in treating cancer, but success depends on identifying cancer vulnerabilities. In our study, we utilize small RNA sequencing to examine the impact of pathway activation on microRNA (miRNA) expression patterns. Interestingly, we discover that miRNAs capable of inhibiting key members of activated pathways are frequently diminished. Building on this observation, we develop an approach that integrates a low-miRNA-expression signature to identify druggable target genes in cancer. We train and validate our approach in colorectal cancer cells and extend it to diverse cancer models using patient-derived in vitro and in vivo systems. Finally, we demonstrate its additional value to support genomic and transcriptomic-based drug prediction strategies in a pan-cancer patient cohort from the National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK) Molecularly Aided Stratification for Tumor Eradication (MASTER) precision oncology trial. In conclusion, our strategy can predict cancer vulnerabilities with high sensitivity and accuracy and might be suitable for future therapy recommendations in a variety of cancer subtypes.


Subject(s)
MicroRNAs , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Precision Medicine , Genomics , Transcriptome
2.
Nat Commun ; 11(1): 4111, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807776

ABSTRACT

Mutational inactivation of VHL is the earliest genetic event in the majority of clear cell renal cell carcinomas (ccRCC), leading to accumulation of the HIF-1α and HIF-2α transcription factors. While correlative studies of human ccRCC and functional studies using human ccRCC cell lines have implicated HIF-1α as an inhibitor and HIF-2α as a promoter of aggressive tumour behaviours, their roles in tumour onset have not been functionally addressed. Herein we show using an autochthonous ccRCC model that Hif1a is essential for tumour formation whereas Hif2a deletion has only minor effects on tumour initiation and growth. Both HIF-1α and HIF-2α are required for the clear cell phenotype. Transcriptomic and proteomic analyses reveal that HIF-1α regulates glycolysis while HIF-2α regulates genes associated with lipoprotein metabolism, ribosome biogenesis and E2F and MYC transcriptional activities. HIF-2α-deficient tumours are characterised by increased antigen presentation, interferon signalling and CD8+ T cell infiltration and activation. Single copy loss of HIF1A or high levels of HIF2A mRNA expression correlate with altered immune microenvironments in human ccRCC. These studies reveal an oncogenic role of HIF-1α in ccRCC initiation and suggest that alterations in the balance of HIF-1α and HIF-2α activities can affect different aspects of ccRCC biology and disease aggressiveness.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , 3T3 Cells , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Blotting, Western , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immunohistochemistry , Inflammation/genetics , Inflammation/metabolism , Kidney Neoplasms/genetics , Mass Spectrometry , Mice , Proteomics/methods , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...