Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(5): 916-924, 2024 May.
Article in English | MEDLINE | ID: mdl-38698238

ABSTRACT

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


Subject(s)
B-Lymphocytes , Breast Neoplasms , Immunologic Surveillance , Humans , Female , Breast Neoplasms/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Monitoring, Immunologic , Exome Sequencing , Antigens, Neoplasm/immunology , Neoplasm Metastasis , Clone Cells
2.
Immunity ; 50(3): 677-691.e13, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30876875

ABSTRACT

Lineage-based vaccine design is an attractive approach for eliciting broadly neutralizing antibodies (bNAbs) against HIV-1. However, most bNAb lineages studied to date have features indicative of unusual recombination and/or development. From an individual in the prospective RV217 cohort, we identified three lineages of bNAbs targeting the membrane-proximal external region (MPER) of the HIV-1 envelope. Antibodies RV217-VRC42.01, -VRC43.01, and -VRC46.01 used distinct modes of recognition and neutralized 96%, 62%, and 30%, respectively, of a 208-strain virus panel. All three lineages had modest levels of somatic hypermutation and normal antibody-loop lengths and were initiated by the founder virus MPER. The broadest lineage, VRC42, was similar to the known bNAb 4E10. A multimeric immunogen based on the founder MPER activated B cells bearing the unmutated common ancestor of VRC42, with modest maturation of early VRC42 intermediates imparting neutralization breadth. These features suggest that VRC42 may be a promising template for lineage-based vaccine design.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , AIDS Vaccines/immunology , Amino Acid Sequence , B-Lymphocytes/immunology , Cell Line , HEK293 Cells , HIV Infections/immunology , Humans , Leukocytes, Mononuclear , Longitudinal Studies
3.
Sci Immunol ; 2(7)2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28783671

ABSTRACT

Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. Antibody 10E8, reactive with the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1-specific memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an HIV-1-infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains.

4.
Nat Immunol ; 18(9): 1016-1024, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28692065

ABSTRACT

Aberrant population expansion of follicular helper T cells (TFH cells) occurs in patients with lupus. An unanswered question is whether an altered repertoire of T cell antigen receptors (TCRs) is associated with such expansion. Here we found that the transcription factor Blimp-1 (encoded by Prdm1) repressed expression of the gene encoding cathepsin S (Ctss), a cysteine protease that cleaves invariant chains and produces antigenic peptides for loading onto major histocompatibility complex (MHC) class II molecules. The increased CTSS expression in dendritic cells (DCs) from female mice with dendritic cell-specific conditional knockout of Prdm1 (CKO mice) altered the presentation of antigen to CD4+ T cells. Analysis of complementarity-determining region 3 (CDR3) regions containing the ß-chain variable region (Vß) demonstrated a more diverse repertoire of TFH cells from female CKO mice than of those from wild-type mice. In vivo treatment of CKO mice with a CTSS inhibitor abolished the lupus-related phenotype and reduced the diversity of the TFH cell TCR repertoire. Thus, Blimp-1 deficiency in DCs led to loss of appropriate regulation of Ctss expression in female mice and thereby modulated antigen presentation and the TFH cell repertoire to contribute to autoimmunity.


Subject(s)
Cathepsins/metabolism , Dendritic Cells/metabolism , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/genetics , Animals , Antibodies, Antinuclear/immunology , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , DNA/immunology , Dendritic Cells/immunology , Enzyme-Linked Immunosorbent Assay , Female , Kidney/pathology , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation , Mice , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Receptors, Antigen, T-Cell, alpha-beta/genetics
5.
Nat Chem Biol ; 6(11): 807-13, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20871599

ABSTRACT

Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 (R)-selective amine transaminases, which catalyzed the synthesis of several (R)-amines with excellent optical purity up to >99% enantiomeric excess.


Subject(s)
Bacteria/enzymology , Computational Biology/methods , Transaminases/analysis , Transaminases/chemistry , Algorithms , Amino Acid Motifs , Amino Acid Sequence , Biocatalysis , Databases, Protein , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Molecular Sequence Data , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Sequence Alignment , Stereoisomerism , Structure-Activity Relationship , Substrate Specificity , Transaminases/classification , Transaminases/metabolism
6.
Anal Chem ; 82(5): 2082-6, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20148590

ABSTRACT

Amine-transaminases (ATAs, omega-transaminases, omega-TA) are PLP-dependent enzymes that catalyze amino group transfer reactions. In contrast to the widespread and well-known amino acid-transaminases, ATAs are able to convert substrates lacking an alpha-carboxylic functional group. They have gained increased attention because of their potential for the asymmetric synthesis of optically active amines, which are frequently used as building blocks for the preparation of numerous pharmaceuticals. Having already introduced a fast kinetic assay based on the conversion of the model substrate alpha-methylbenzylamine for the characterization of the amino acceptor specificity, we now report on a kinetic conductivity assay for investigating the amino donor specificity of a given ATA. The course of an ATA-catalyzed reaction can be followed conductometrically since the conducting substrates, a positively charged amine and a negatively charged keto acid, are converted to nonconducting products, a noncharged ketone and a zwitterionic amino acid. The decrease of conductivity for the investigated reaction systems were determined to be 33-52 microS mM(-1). In contrast to other ATA-assays previously described, with this approach all transamination reactions between any amine and any keto acid can be monitored without the need for an additional enzyme or staining solutions. The assay was used for the characterization of a ATA from Rhodobacter sphaeroides, and the data obtained were in excellent agreement with gas chromatography analysis.


Subject(s)
Amines/metabolism , Electric Conductivity , Transaminases/metabolism , Calibration , Catalysis , Chromatography, Gas , Kinetics , Substrate Specificity
7.
Appl Microbiol Biotechnol ; 85(5): 1417-25, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19662400

ABSTRACT

The nitrile hydratase (NHase, EC 4.2.1.84) genes (alpha and beta subunit) and the corresponding activator gene from Rhodococcus equi TG328-2 were cloned and sequenced. This Fe-type NHase consists of 209 amino acids (alpha subunit, M(r) 23 kDa) and 218 amino acids (beta subunit, M(r) 24 kDa) and the NHase activator of 413 amino acids (M(r) 46 kDa). Various combinations of promoter, NHase and activator genes were constructed to produce active NHase enzyme recombinantly in E. coli. The maximum enzyme activity (844 U/mg crude cell extract towards methacrylonitrile) was achieved when the NHase activator gene was separately co-expressed with the NHase subunit genes in E. coli BL21 (DE3). The overproduced enzyme was purified with 61% yield after French press, His-tag affinity chromatography, ultrafiltration and lyophilization and showed typical Fe-type NHase characteristics: besides aromatic and heterocyclic nitriles, aliphatic ones were hydrated preferentially. The purified enzyme had a specific activity of 6,290 U/mg towards methacrylonitrile. Enantioselectivity was observed for aromatic compounds only with E values ranging 5-17. The enzyme displayed a broad pH optimum from 6 to 8.5, was most active at 30 degrees C and showed the highest stability at 4 degrees C in thermal inactivation studies between 4 degrees C and 50 degrees C.


Subject(s)
Cloning, Molecular , Escherichia coli/genetics , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Rhodococcus equi/enzymology , Rhodococcus equi/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Genes, Bacterial , Hydro-Lyases/isolation & purification , Hydrogen-Ion Concentration , Methacrylates/metabolism , Nitriles/metabolism , Promoter Regions, Genetic , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Spectrophotometry, Ultraviolet , Stereoisomerism , Substrate Specificity , Temperature
8.
Anal Chem ; 81(19): 8244-8, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19739593

ABSTRACT

For the biocatalytic preparation of optically active amines, omega-transaminases (omega-TA) are of special interest since they allow the asymmetric synthesis starting from prostereogenic ketones with 100% yield. To facilitate the purification and characterization of novel omega-TA, a fast kinetic assay was developed based on the conversion of the widely used model substrate alpha-methylbenzylamine, which is commonly accepted by most of the known omega-TAs. The product from this reaction, acetophenone, can be detected spectrophotometrically at 245 nm with high sensitivity (epsilon = 12 mM(-1) cm(-1)), since the other reactants show only a low absorbance. Besides the standard substrate pyruvate, all low-absorbing ketones, aldehydes, or keto acids can be used as cosubstrates, and thus the amino acceptor specificity of a given omega-TA can be obtained quickly. Furthermore, the assay allows the fast investigation of enzymatic properties like pH and temperature optimum and stability. This method was used for the characterization of a novel omega-TA cloned from Rhodobacter sphaeroides, and the data obtained were in excellent accordance with a standard capillary electrophoresis assay.


Subject(s)
Acetophenones/analysis , Spectrophotometry, Ultraviolet/methods , Transaminases/metabolism , Benzylamines/chemistry , Benzylamines/metabolism , Hydrogen-Ion Concentration , Kinetics , Pyruvic Acid/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Rhodobacter sphaeroides/enzymology , Temperature , Transaminases/chemistry , Transaminases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...