Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
2.
J Dairy Sci ; 101(3): 2383-2394, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29331456

ABSTRACT

The reliable detection of estrus is an important scientific and practical challenge in dairy cattle farming. Female vocalization may indicate reproductive status, and preliminary evidence suggests that this information can be used to detect estrus in dairy cattle. The aim of this study was to associate the changes in the vocalization rate of dairy heifers with behavioral estrus indicators as well as test the influence of the type of estrus (natural estrus vs. superovulation-induced estrus). We analyzed 6 predefined estrus-related behavior patterns (standing to be mounted, head-side mounting, active mounting, chin resting, being mounted while not standing, and active sniffing in the anogenital region) and vocalization rates in the peri-estrus period (day of estrus ± 1 d) of 12 German Holstein heifers using audio-visual recordings. Each heifer was observed under natural estrus and a consecutive superovulation induced by FSH and cloprostenol. Estrus was determined by behavioral patterns and confirmed by clinical examination (vaginoscopy and ultrasound imaging of the ovaries) as well as by the concentration of peripheral progesterone. Estrus behavior and vocalization rates were analyzed in 3-h intervals (an average of 19 intervals for each heifer), and an estrus score was calculated based on the 6 behaviors. The interval with the highest estrus score (I0) was considered the estrus climax. We demonstrated similar time courses for the estrus score and vocalization rate independent of estrus type. However, in natural estrus, the maximum vocalization rate (±SE) occurred in the interval before estrus climax (I-1; 42.58 ± 21.89) and was significantly higher than that in any other interval except estrus climax (I0; 27.58 ± 9.76). During natural estrus, the vocalization rate was significantly higher within the interval before estrus climax (I-1; 42.58 ± 21.89 vs. 11.58 ± 5.51) than under superovulation. The results underscore the potential use of vocalization rate as a suitable indicator of estrus climax in automated estrus detection devices. Further studies and technical development are required to record and process individual vocalization rates.


Subject(s)
Cattle/physiology , Estrus Detection/methods , Estrus , Superovulation , Vocalization, Animal , Animals , Female , Progesterone/metabolism , Sexual Behavior, Animal
3.
Semin Cell Dev Biol ; 73: 209-219, 2018 01.
Article in English | MEDLINE | ID: mdl-28843977

ABSTRACT

The atomic force microscope (AFM) has become a powerful tool for the visualization, probing and manipulation of RNA at the single molecule level. AFM measurements can be carried out in buffer solution in a physiological medium, which is crucial to study the structure and function of biomolecules, also allowing studying them at work. Imaging the specimen in its native state is a great advantage compared to other high resolution methods such as electron microscopy and X-ray diffraction. There is no need to stain, freeze or crystallize biological samples. Moreover, compared to NMR spectroscopy for instance, for AFM studies the size of the biomolecules is not limiting. Consequently the AFM allows one also to investigate larger RNA molecules. In particular, structural studies of nucleic acids and assemblies thereof, have been carried out by AFM routinely including ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. These are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In particular by AFM unique information can be obtained on these RNA based assemblies. Moreover, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. Important applications include the detection and quantification of RNA in biological samples. A selection of recent highlights and breakthroughs will be provided related to structural and functional studies by AFM. The main intention of this short review to provide the reader with a flavor of what AFM is able to contribute to RNA research and engineering.


Subject(s)
Microscopy, Atomic Force , RNA/chemistry , RNA/ultrastructure , Nanotechnology , Nucleic Acid Conformation
4.
Sci Rep ; 7(1): 12055, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935925

ABSTRACT

The acceptance of animal products is increasingly associated with standardized animal welfare, which relates to appropriate animal husbandry from birth to slaughter. In particular, shipment to the slaughterhouse is considered as a critical process exposing the animals to a number of, in part severe, stressors. New biomarkers may be useful for the assessment of animal welfare. The IGF-system has been assessed in a commercial pig transport in conjunction with established markers of stress response. Furthermore, the effect of repeated restraint as an experimental model for repeated acute stress was investigated. During shipment from farm to slaughterhouse, plasma concentrations of IGFBP-3 and IGFBP-2 were significantly reduced (p < 0.01). After shipment, the plasma concentrations of IGFBP-5, glucocorticoids and IL-2 increased but decreased after lairage (p < 0.05) whereas IGF-1 decreased after shipment (p < 0.01). Repeated acute stress increased concentrations of IGFBP-3 and IGF-1 in exsanguination blood (p < 0.05). Differential IGF- signatures can indicate altered endocrine or metabolic control and thus contain complex animal-related information. The somatotropic axis may be of particular interest when established biomarkers such as cortisol, glucose, or lactate cannot be used for the assessment of animal stress or welfare.


Subject(s)
Abattoirs , Biomarkers/blood , Stress, Physiological , Stress, Psychological/prevention & control , Animal Husbandry , Animal Welfare , Animals , Glucocorticoids/blood , Insulin-Like Growth Factor Binding Protein 2/blood , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 5/blood , Insulin-Like Growth Factor I/analysis , Interleukin-2/blood , Swine , Time Factors , Transportation
5.
Environ Sci Pollut Res Int ; 24(14): 12758-12766, 2017 May.
Article in English | MEDLINE | ID: mdl-26939687

ABSTRACT

In a previous study, Env Sci Poll Res:1-7, 2015 showed that polychlorinated biphenyls (PCBs), polychlorinated dibenzo dioxins (PCDDs), and polychlorinated dibenzo furanes (PCDFs) are found in commercially available (nano) particular titanium dioxide as a result of the fabrication. Here, we give a brief perspective and reason the toxicity of these new classes of persistent organic pollutants (POPs) by reviewing also their nanoparticular properties, such as surface-to-volume ratio, photocatalytic activity, polarity shifts, and stealth effect. These insights point towards a new class of POPs and toxicologic effects, which are related to the size but not a result of nanotechnology itself. We pave the way to the understanding of until now unresolved very complex phenomena, such as the indoor exposure, formation, and transformation of POP and sick-building syndrome. This is a fundamental message for nanotoxicology and kinetics and should be taken into account when determining the toxicity of nanomaterials and POPs separately and as a combination.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Benzofurans , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins
6.
Methods ; 103: 25-33, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27222101

ABSTRACT

In the past 30years, the atomic force microscope (AFM) has become a true enabling platform in the life sciences opening entire novel avenues for structural and dynamic studies of biological systems. It enables visualization, probing and manipulation across the length scales, from single molecules to living cells in buffer solution under physiological conditions without the need for labeling or staining of the specimen. In particular, for structural studies of nucleic acids and assemblies thereof, the AFM has matured into a routinely used tool providing nanometer spatial resolution. This includes ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. By AFM unique information can be obtained on RNA based assemblies which are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In addition, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review first the basic functioning principles of commonly used AFM modes including AFM based force spectroscopy will be briefly described. Next a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. The main intention of this short review to give the reader a flavor of what AFM contributes to RNA research and engineering.


Subject(s)
Microscopy, Atomic Force , RNA, Double-Stranded/chemistry , Base Sequence , Inverted Repeat Sequences , Nanostructures/ultrastructure , Nucleic Acid Conformation , RNA, Double-Stranded/ultrastructure
7.
Environ Sci Pollut Res Int ; 23(5): 4837-43, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26545886

ABSTRACT

In the present study, we report on the co-occurrence of persistent organic pollutants (POPs) adsorbed on nanoparticular titanium dioxide (TiO2). We report on the finding of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) on the surface of commercially available TiO2 nanoparticles, being formed during the fabrication process of the TiO2. Thereby, the samples comprise PCBs with higher congener numbers or, in the absence of PCBs, a high concentration of PCDDs and PCDFs. This new class of POPs on an active catalytic surface and the great range of applications of nanoparticular TiO2, such as in color pigments, cosmetics, and inks, give rise to great concern due to their potential toxicity.


Subject(s)
Benzofurans/analysis , Nanoparticles/chemistry , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analogs & derivatives , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins/analysis , Titanium
8.
Ultramicroscopy ; 150: 79-87, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25544678

ABSTRACT

Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast.

9.
Lab Chip ; 14(21): 4159-70, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25231342

ABSTRACT

The integration of smart stimulus-responsive polymers as functional elements within microfluidic devices has greatly improved the performance capabilities of controlled fluid delivery. For their use as actuators in microfluidic systems, reversible expansion and shrinking are unique mechanisms which can be utilized as both passive and active fluid control elements to establish gate and valve functions (passive) and pumping elements (active). Various constituents in microfluidic glass channels based on stimulus-responsive elements have been reported based on pH-responsive, thermoresponsive and photoresponsive coatings. Fluid control and robust performance have been demonstrated in microfluidic devices in a number of studies. Here we give a brief overview of selected examples from the literature reporting on the use of stimulus response polymers as active or passive elements for fluid control in microfluidic devices, with specific emphasis on glass-based devices. The remaining challenges include improving switching times and achieving local addressability of the responsive constituent. We envisage tackling these challenges by utilizing redox-responsive polymers which offer fast and reversible switching and local addressability in combination with nanofabricated electrodes.

10.
Nanoscale ; 6(20): 12089-95, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25195609

ABSTRACT

We describe a novel approach to quantitatively visualize sub nm height changes occurring in thin films of redox active polymers upon reversible electrochemical oxidation/reduction in situ and in real-time with electrochemical imaging ellipsometry (EC-IE). Our approach is based on the utilization of a micro-patterned substrate containing circular patterns of passive (non-redox active) 11-mercapto-1-undecanol (MCU) within a redox-responsive oligoethylene sulfide end-functionalized poly(ferrocenyldimethylsilane) (ES-PFS) film on a gold substrate. The non-redox responsive MCU layer was used as a molecular reference layer for the direct visualization of the minute thickness variations of the ES-PFS film. The ellipsometric microscopy images were recorded in aqueous electrolyte solutions at potentials of -0.1 V and 0.6 V vs. Ag/AgCl corresponding to the reduced and oxidized redox states of ES-PFS, respectively. The ellipsometric contrast images showed a 37 (±2)% intensity increase in the ES-PFS layer upon oxidation. The thickness of the ES-PFS layer reversibly changed between 4.0 (±0.1) nm and 3.4 (±0.1) nm upon oxidation and reduction, respectively, as determined by IE. Additionally, electrochemical atomic force microscopy (EC-AFM) was used to verify the redox controlled thickness variations. The proposed method opens novel avenues to optically visualize minute and rapid height changes occurring e.g. in redox active (and other stimulus responsive) polymer films in a fast and non-invasive manner.

11.
Nat Commun ; 5: 3781, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24828542

ABSTRACT

Polymer brushes lead to small friction and wear and thus hold great potential for industrial applications. However, interdigitation of opposing brushes makes them prone to damage. Here we report molecular dynamics simulations revealing that immiscible brush systems can form slick interfaces, in which interdigitation is eliminated and dissipation strongly reduced. We test our findings with friction force microscopy experiments on hydrophilic and hydrophobic brush systems in both symmetric and asymmetric setups. In the symmetric setup both brushes are chemically alike, while the asymmetric system consists of two different brushes that each prefer their own solvent. The trends observed in the experimentally measured force traces and the friction reduction are similar to the simulations and extend to fully immersed contacts. These results reveal that two immiscible brush systems in mechanical contact slide at a fluid-fluid interface while having load-bearing ability. This makes them ideal candidates for tribological applications.

12.
Soft Matter ; 10(17): 3134-42, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24695793

ABSTRACT

Using a combination of ellipsometry and friction force microscopy, we study the reversible swelling, collapse and variation in friction properties of covalently bound poly(N-isopropylacrylamide) (PNIPAM) layers on silicon with different grafting densities in response to exposure to good solvents and co-nonsolvent mixtures. Changes in the thickness and segment density distribution of grafted films are investigated by in situ ellipsometry. Based on quantitative modelling of the ellipsometry spectra, we postulate a structural model, which assumes that collapse takes place in the contacting layer between the brush and the co-nonsolvent and the top-collapsed brushes remain hydrated in the film interior. Using the structural model derived from ellipsometry spectra, we analyse the AFM based friction force microscopy data, which were obtained by silica colloidal probes. Results show a large increase of the friction coefficient of PNIPAM grafts when the grafts swollen by water are brought in contact with co-nonsolvents. For instance, the value of the friction coefficient for a medium density brush in water is four times lower than the value observed in a water-methanol (50% v/v) mixture. This increase of friction is accompanied by an increase in adherence between the PNIPAM chains and the silica colloidal probes, and is a result of chain collapse in the graft when contacted by a co-nonsolvent mixture in agreement with the model postulated on the basis of ellipsometric characterisation. The kinetic behaviour of the collapse is assessed by measuring the temporal variation of friction in situ as a function of elapsed time following contact with the co-nonsolvent as a function of graft density. In conclusion, the effect of co-nonsolvency influenced both the thickness of the PNIPAM brushes and the tribological behavior of the brush surfaces.

13.
J Am Chem Soc ; 136(1): 330-5, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24308639

ABSTRACT

Macromolecular networks consisting of homogeneously distributed covalently bonded inorganic and organic precursors are anticipated to show remarkable characteristics, distinct from those of the individual constituents. A novel hyper-cross-linked ultrathin membrane is presented, consisting of a giant molecular network of alternating polyhedral oligomeric silsesquioxanes and aromatic imide bridges. The hybrid characteristics of the membrane are manifested in excellent gas separation performance at elevated temperatures, providing a new and key enabling technology for many important industrial scale applications.

14.
Anal Chem ; 85(19): 8937-42, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23992481

ABSTRACT

We report here first results obtained on a novel, in situ renewable mercury microelectrode integrated into an atomic force microscopy (AFM) cantilever. Our approach is based on a fountain pen probe with appropriate dimensions enabling reversible filling with (nonwetting) mercury under changing the applied pressure at a connected mercury supply in a dedicated experimental setup. The fountain pen probe utilizes a special design with vertical pillars inside the channel to minimize mechanical perturbation. In proof of principle experiments, dropping and hanging mercury drop were observed as a function of the applied pressure at the external mercury supply. Electrical conductivity occurred only through the mercury after filling, and the empty fountain pen probe showed excellent electrical insulation. This was demonstrated by chronoamperometric measurements in the electrolyte and by mechanical and electrical contacting of an ITO substrate with a mercury-filled and empty probe in air. Finally, cyclic voltammetry and square wave voltammetry were done in a static mercury electrode fountain pen configuration, demonstrating the principle usability of the mercury probe for electrochemical studies. Our findings are of fundamental importance as they enable further integration of a renewable mercury electrode probe into an AFM setup, which is the subject of ongoing work.

15.
J Phys Condens Matter ; 25(18): 184005, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23598774

ABSTRACT

Until now, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) has been the most often applied direct imaging technique to analyze surface nanobubbles at the solid-aqueous interface. While the presence and number density of nanobubbles can be unequivocally detected and estimated, it remains unclear how much the a priori invasive nature of AFM affects the apparent shapes and dimensions of the nanobubbles. To be able to successfully address the unsolved questions in this field, the accurate knowledge of the nanobubbles' dimensions, radii of curvature etc is necessary. In this contribution we present a comparative study of surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water acquired with (i) TM AFM and (ii) the recently introduced PFT (PeakForce tapping) mode, in which the force exerted on the nanobubbles rather than the amplitude of the resonating cantilever is used as the AFM feedback parameter during imaging. In particular, we analyzed how the apparent size and shape of nanobubbles depend on the maximum applied force in PFT AFM. Even for forces as small as 73 pN, the nanobubbles appeared smaller than their true size, which was estimated from an extrapolation of the bubble height to zero applied force. In addition, the size underestimation was found to be more pronounced for larger bubbles. The extrapolated true nanoscopic contact angles for nanobubbles on HOPG, measured in PFT AFM, ranged from 145° to 175° and were only slightly underestimated by scanning with non-zero forces. This result was comparable to the nanoscopic contact angles of 160°-175° measured using TM AFM in the same set of experiments. Both values disagree, in accordance with the literature, with the macroscopic contact angle of water on HOPG, measured here to be 63° ± 2°.


Subject(s)
Graphite/chemistry , Microbubbles , Microscopy, Atomic Force , Nanoparticles , Water/chemistry , Surface Properties
16.
Langmuir ; 29(11): 3662-7, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23421806

ABSTRACT

The energetics and dynamics of the various phases of decanethiolate self-assembled monolayers on Au(111) surfaces were studied with scanning tunneling microscopy. We have observed five different phases of the decanethiolate monolayer on Au(111): four ordered phases (ß, δ, χ*, and φ) and one disordered phase (ε). We have determined the boundary free energies between the disordered and order phases by analyzing the thermally induced meandering of the domain boundaries. On the basis of these results, we are able to accurately predict the two-dimensional phase diagram of the decanethiolate/Au(111) system. The order-disorder phase transition of the χ* phase occurs at 295 K, followed by the order-disorder phase transition of the ß phase at 325 K. Above temperatures of 325 K, only the densely packed φ and disordered ε phases remain. Our findings are in good agreement with the phase diagram of the decanethiolate/Au(111) system that was put forward by Poirier et al. [Langmuir 2001, 17 (4), 1176-1183].


Subject(s)
Alkanes/chemistry , Gold/chemistry , Microscopy, Scanning Tunneling , Molecular Dynamics Simulation , Molecular Conformation
17.
Langmuir ; 29(7): 2250-7, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23339554

ABSTRACT

We investigated the dynamics of decanethiol self-assembled monolayers on Au(111) surfaces using time-resolved scanning tunneling microscopy at room temperature. The expected ordered phases (ß, δ, χ*, and φ) and a disordered phase (ε) were observed. Current-time traces with the feedback loop disabled were recorded at different locations on the surface. The sulfur end group of the decanethiolate molecule exhibits a stochastic two-level switching process when the molecule is adsorbed in a (local) ß phase registry. This two-level process is attributed to the diffusion of the Au-thiolate complex between two adjacent adsorption sites. The irregular current jumps in the current-time traces recorded on the tails of decanethiolate molecules in the ordered ß, δ, and χ* phases are ascribed to wagging of the alkyl tails. Finally, the disordered phase is characterized by even larger current jumps, which indicates that the tail of the decanethiolate flips up occasionally and makes contact with the tip. Our experiments reveal that the massive dynamics of the self-assembled monolayer is due to diffusion of decanethiol-Au complexes, rather than the diffusion of decanethiolate molecules.


Subject(s)
Gold/chemistry , Microscopy, Scanning Tunneling/methods
18.
Colloids Surf B Biointerfaces ; 102: 923-30, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23138001

ABSTRACT

The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption.


Subject(s)
Biofouling/prevention & control , Microscopy, Atomic Force/methods , Polymers/chemistry , Fibronectins/chemistry , Oligopeptides/chemistry , Peptides/chemistry
19.
J Biomed Mater Res B Appl Biomater ; 100(3): 799-807, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22331841

ABSTRACT

A study of oxide layers grown on 2205 duplex stainless steel (DSS) and AISI 316L austenitic stainless steel in simulated physiological solution is presented here in order to establish the possibility of replacement of AISI 316 L with 2205 DSS in biomedical applications. The results of the potentiodynamic measurements show that the extent of the passive range significantly increased for DSS 2205 compared to AISI 316L stainless steel. Cyclic voltammetry was used to investigate electrochemical processes taking place on the steel surfaces. Oxide layers formed by electrochemical oxidation at different oxidation potentials were studied by X-ray photoelectron spectroscopy, and their compositions were analyzed as a function of depth. The main constituents on both the investigated materials were Cr- and Fe-oxides. Atomic force microscopy topography studies revealed the higher corrosion resistance of the DSS 2205 compared to the AISI 316L under the chosen experimental conditions.


Subject(s)
Materials Testing , Stainless Steel/chemistry , Electrochemistry , Oxidation-Reduction , Photoelectron Spectroscopy
20.
Ultramicroscopy ; 111(12): 1659-69, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22094372

ABSTRACT

Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.


Subject(s)
Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Spectrum Analysis/methods , Algorithms , Calibration , Ligands , Models, Theoretical , Spectrum Analysis/instrumentation , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...