Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 27(11): 1027-1037, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28973640

ABSTRACT

Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of α2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to α2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.


Subject(s)
G(M3) Ganglioside/metabolism , N-Acetylneuraminic Acid/metabolism , Norovirus/metabolism , Animals , Blood Group Antigens/metabolism , Capsid Proteins/metabolism , Fucose/metabolism , Lactose/metabolism , Mice , Protein Binding
2.
Antiviral Res ; 146: 174-183, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28927677

ABSTRACT

West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3pro, we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3pro. Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC50 ∼ 500 µM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3pro. To identify the matching protein binding site, chemical shift perturbation studies employing 1H,15N-TROSY-HSQC experiments with uniformly 2H,15N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3pro inhibitors.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects , West Nile virus/drug effects , Binding Sites , Drug Design , Humans , Magnetic Resonance Spectroscopy , Protein Conformation , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , West Nile virus/chemistry , West Nile virus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...