Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1068, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316779

ABSTRACT

Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator. The quantum confinement in the nanowire is achieved using deterministically grown wurtzite tunnel barriers. Our experiments on even charge parity states and at large magnetic fields, allow us to identify the relevant spin states and to measure the spin decoherence rates and spin-photon coupling strengths. We find an anti-crossing between the resonator mode in the single photon limit and a singlet-triplet qubit with a spin-photon coupling strength of g/2π = 139 ± 4 MHz. This coherent coupling exceeds the resonator decay rate κ/2π = 19.8 ± 0.2 MHz and the qubit dephasing rate γ/2π = 116 ± 7 MHz, putting our system in the strong coupling regime.

2.
EPJ Quantum Technol ; 10(1): 41, 2023.
Article in English | MEDLINE | ID: mdl-37810533

ABSTRACT

High-impedance resonators are a promising contender for realizing long-distance entangling gates between spin qubits. Often, the fabrication of spin qubits relies on the use of gate dielectrics which are detrimental to the quality of the resonator. Here, we investigate loss mechanisms of high-impedance NbTiN resonators in the vicinity of thermally grown SiO2 and Al2O3 fabricated by atomic layer deposition. We benchmark the resonator performance in elevated magnetic fields and at elevated temperatures and find that the internal quality factors are limited by the coupling between the resonator and two-level systems of the employed oxides. Nonetheless, the internal quality factors of high-impedance resonators exceed 103 in all investigated oxide configurations which implies that the dielectric configuration would not limit the performance of resonators integrated in a spin-qubit device. Because these oxides are commonly used for spin qubit device fabrication, our results allow for straightforward integration of high-impedance resonators into spin-based quantum processors. Hence, these experiments pave the way for large-scale, spin-based quantum computers.

3.
Phys Rev Lett ; 121(13): 137701, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312070

ABSTRACT

The band structure of graphene can be strongly modified if its lattice is aligned with the one of a boron nitride substrate. A moiré superlattice forms, which manifests itself by the appearance of new Dirac points, accompanied by van Hove singularities. In this work, we present supercurrent measurements in a Josephson junction made from such a graphene superlattice in the long and diffusive transport regime, where the critical current depends on the Thouless energy. We can then estimate the specific density of states of the graphene superlattice from the combined measurement of the critical current and the normal state resistance. The result matches with theoretical predictions and highlights the strong increase of the density of states at the van Hove singularities. By measuring the magnetic field dependence of the critical current, we find the presence of edge currents at these singularities. We explain it by the reduction of the Fermi velocity associated with the van Hove singularity, which suppresses the supercurrent in the bulk while the electrons at the edges remain less localized, resulting in an edge supercurrent. We attribute these different behaviors of the edges to defects or chemical doping.

4.
Nanotechnology ; 27(19): 195303, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27040175

ABSTRACT

Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

5.
Phys Rev Lett ; 115(22): 227003, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26650317

ABSTRACT

Cooper pair splitting (CPS) is a process in which the electrons of the naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here, we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three-site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.

6.
Phys Rev Lett ; 115(21): 216801, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26636862

ABSTRACT

We report the observation of two fundamental subgap transport processes through a quantum dot (QD) with a superconducting contact. The device consists of a carbon nanotube contacted by a Nb superconducting and a normal metal contact. First, we find a single resonance with position, shape, and amplitude consistent with the theoretically predicted resonant Andreev tunneling (AT) through a single QD level. Second, we observe a series of discrete replicas of resonant AT at a separation of ~145 µeV, with a gate, bias, and temperature dependence characteristic for boson-assisted, inelastic AT, in which energy is exchanged between a bosonic bath and the electrons. The magnetic field dependence of the replica's amplitudes and energies suggest that two different bosons couple to the tunnel process.

7.
Nano Lett ; 15(7): 4585-90, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26086240

ABSTRACT

Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, that is, the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, for example, Majorana modes, by single electron spectroscopy and correlation experiments.

8.
Nat Commun ; 6: 7165, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25975829

ABSTRACT

Coupling carbon nanotube devices to microwave circuits offers a significant increase in bandwidth (BW) and signal-to-noise ratio. These facilitate fast non-invasive readouts important for quantum information processing, shot noise and correlation measurements. However, creation of a device that unites a low-disorder nanotube with a low-loss microwave resonator has so far remained a challenge, due to fabrication incompatibility of one with the other. Employing a mechanical transfer method, we successfully couple a nanotube to a gigahertz superconducting matching circuit and thereby retain pristine transport characteristics such as the control over formation of, and coupling strengths between, the quantum dots. Resonance response to changes in conductance and susceptance further enables quantitative parameter extraction. The achieved near matching is a step forward promising high-BW noise correlation measurements on high impedance devices such as quantum dot circuits.

9.
Nanoscale ; 5(24): 12104-10, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24142362

ABSTRACT

Noncovalent functionalization is a well-known nondestructive process for property engineering of carbon nanostructures, including carbon nanotubes and graphene. However, it is not clear to what extend the extraordinary electrical properties of these carbon materials can be preserved during the process. Here, we demonstrated that noncovalent functionalization can indeed delivery graphene field-effect transistors (FET) with fully preserved mobility. In addition, these high-mobility graphene transistors can serve as a promising platform for biochemical sensing applications.

10.
Phys Rev Lett ; 109(15): 157002, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102354

ABSTRACT

The two electrons of a Cooper pair in a conventional superconductor form a spin singlet and therefore a maximally entangled state. Recently, it was demonstrated that the two particles can be extracted from the superconductor into two spatially separated contacts via two quantum dots in a process called Cooper pair splitting (CPS). Competing transport processes, however, limit the efficiency of this process. Here we demonstrate efficiencies up to 90%, significantly larger than required to demonstrate interaction-dominated CPS, and on the right order to test Bell's inequality with electrons. We compare the CPS currents through both quantum dots, for which large apparent discrepancies are possible. The latter we explain intuitively and in a semiclassical master equation model. Large efficiencies are required to detect electron entanglement and for prospective electronics-based quantum information technologies.

11.
Nanotechnology ; 23(36): 365201, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22909952

ABSTRACT

Conducting atomic force microscopy is an attractive approach enabling the correlation of mechanical and electrical properties in individual molecular junctions. Here we report on measurements of gold-gold and gold-octanedithiol-gold junctions. We introduce two-dimensional histograms in the form of scatter plots to better analyze the correlation between force and conductance. In this representation, the junction-forming octanedithiol compounds lead to a very clear step in the force-conductance data, which is not observed for control monothiol compounds. The conductance found for octanedithiols is in agreement with the idea that junction conductance is dominated by a single molecule.

12.
Langmuir ; 28(25): 9899-905, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22631046

ABSTRACT

Conventional gate oxide layers (e.g., SiO(2), Al(2)O(3), or HfO(2)) in silicon field-effect transistors (FETs) provide highly active surfaces, which can be exploited for electronic pH sensing. Recently, great progress has been achieved in pH sensing using compact integrateable nanowire FETs. However, it has turned out to be much harder to realize a true reference electrode, which--while sensing the electrostatic potential--does not respond to the proton concentration. In this work, we demonstrate a highly effective reference sensor, a so-called reference FET, whose proton sensitivity is suppressed by as much as 2 orders of magnitude. To do so, the Al(2)O(3) surface of a nanowire FET was passivated with a self-assembled monolayer of silanes with a long alkyl chain. We have found that a full passivation can be achieved only after an extended period of self-assembling lasting several days at 80 °C. We use this slow process to measure the number of active proton binding sites as a function of time by a quantitative comparison of the measured nonlinear pH-sensitivities to a theoretical model (site-binding model). Furthermore, we have found that a partially passivated surface can sense small changes in the number of active binding sites reaching a detection limit of δN(s) ≈ 170 µm(-2) Hz(-1/2) at 10 Hz and pH 3.

13.
Phys Rev Lett ; 108(7): 076602, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401232

ABSTRACT

Bilayer graphene bears an eightfold degeneracy due to spin, valley, and layer symmetry, allowing for a wealth of broken symmetry states induced by magnetic or electric fields, by strain, or even spontaneously by interaction. We study the electrical transport in clean current annealed suspended bilayer graphene. We find two kinds of devices. In bilayers of type B1 the eightfold zero-energy Landau level is partially lifted above a threshold field revealing an insulating ν=0 quantum-Hall state at the charge neutrality point. In bilayers of type B2 the Landau level lifting is full and a gap appears in the differential conductance even at zero magnetic field, suggesting an insulating spontaneously broken symmetry state. Unlike B1, the minimum conductance in B2 is not exponentially suppressed, but remains finite with a value G is < or approximately equall to e(2)/h even in a large magnetic field. We suggest that this phase of B2 is insulating in the bulk and bound by compressible edge states.

14.
Phys Rev Lett ; 107(13): 136801, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026885

ABSTRACT

In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit nonclassical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the nonlocal electrical transport through the device can be tuned by electrical means and that the energy dependence of the effective density of states in the QDs is relevant for the rates of Cooper pair splitting (CPS) and elastic cotunneling. Such experimental tools are necessary to understand and develop CPS-based sources of entangled electrons in solid-state devices.

15.
Nanotechnology ; 22(26): 265204, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21576773

ABSTRACT

We show a detailed investigation of the split Kondo effect in a carbon nanotube quantum dot with multiple gate electrodes. Two conductance peaks, observed at finite bias in nonlinear transport measurements, are found to approach each other for increasing magnetic field, to result in a recovered zero bias Kondo resonance at finite magnetic field. Surprisingly, in the same charge state, but under different gate configurations, the splitting does not disappear for any value of the magnetic field, but we observe an avoided crossing. We think that our observations can be understood in terms of a two-impurity Kondo effect with two spins coupled antiferromagnetically. The exchange coupling between the two spins can be influenced by a local gate, and the non-recovery of the Kondo resonance for certain gate configurations is explained by the existence of a small antisymmetric contribution to the exchange interaction between the two spins.

16.
Phys Rev Lett ; 104(24): 246804, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20867324

ABSTRACT

The ferromagnetic proximity effect is studied in InAs nanowire based quantum dots strongly coupled to a ferromagnetic (F) and a superconducting (S) lead. The influence of the F lead is detected through the splitting of the spin-1/2 Kondo resonance. We show that the F lead induces a local exchange field on the quantum dot, which has varying amplitude and sign depending on the charge states. The interplay of the F and S correlations generates an exchange field related subgap feature.

17.
Nanotechnology ; 21(27): 274002, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20571189

ABSTRACT

Crossed Andreev reflection (CAR) in metallic nanostructures, a possible basis for solid-state electron entangler devices, is usually investigated by detecting non-local voltages in multi-terminal superconductor/normal metal devices. This task is difficult because other subgap processes may mask the effects of CAR. One of these processes is the generation of charge imbalance (CI) and the diffusion of non-equilibrium quasi-particles in the superconductor. Here we demonstrate a characteristic dependence of non-local CI on a magnetic field applied parallel to the superconducting wire, which can be understood by a generalization of the standard description of CI to non-local experiments. These results can be used to distinguish CAR and CI and to extract CI relaxation times in superconducting nanostructures. In addition, we investigate the dependence of non-local CI on the resistance of the injector and detector contacts and demonstrate a quantitative agreement with a recent theory using only material and junction characteristics extracted from separate direct measurements.

18.
Nanotechnology ; 21(27): 274005, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20571192

ABSTRACT

We investigate the mesoscopic disorder induced rms conductance variance delta G in short few-layer graphene (FLG) flakes contacted by two superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we observe pronounced conductance fluctuations superimposed on a linear background of the two-terminal conductance G. The linear gate voltage induced response can be modelled by a set of interlayer and intralayer capacitances. delta G depends on temperature T and source-drain voltage V(sd). delta G increases with decreasing T and |V(sd)|. When lowering |V(sd)|, a pronounced cross-over at a voltage corresponding to the superconducting energy gap Delta is observed. For [Formula: see text] the fluctuations are markedly enhanced. Expressed in the conductance variance G(GS) of one graphene-superconductor (G-S) interface, values of 0.58 e(2)/h are obtained at the base temperature of 230 mK. The conductance variance in the sub-gap region is larger by up to a factor of 1.4-1.8 compared to the normal state. The observed strong enhancement is due to phase coherent charge transfer caused by Andreev reflection at the G-S interface.

19.
Nano Lett ; 10(6): 2268-74, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20499926

ABSTRACT

Field effect transistors (FETs) are widely used for the label-free detection of analytes in chemical and biological experiments. Here we demonstrate that the apparent sensitivity of a dual-gated silicon nanowire FET to pH can go beyond the Nernst limit of 60 mV/pH at room temperature. This result can be explained by a simple capacitance model including all gates. The consistent and reproducible results build to a great extent on the hysteresis- and leakage-free operation. The dual-gate approach can be used to enhance small signals that are typical for bio- and chemical sensing at the nanoscale.

20.
Nature ; 461(7266): 960-3, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19829377

ABSTRACT

Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.

SELECTION OF CITATIONS
SEARCH DETAIL