Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38587824

ABSTRACT

Ketohexokinase (KHK) catalyzes the ATP-dependent phosphorylation of fructose, forming fructose-1-phosphate and ADP. The enzyme is well studied in Eukarya, in particular in humans and other vertebrates, but homologs have not been identified in Bacteria and Archaea. Here we report the identification of a novel type of KHK from the haloarchaeon Haloferax volcanii (HvKHK). The encoding gene khk was identified as HVO_1812. The gene was expressed as a 90-kDa homodimeric protein, catalyzing the phosphorylation of fructose with a Vmax value of 59 U/mg and apparent KM values for ATP and fructose of 0.47 and 1.29 mM, respectively. Homologs of HvKHK were only identified in a few haloarchaea and halophilic Bacteria. The protein showed low sequence identity to characterized KHKs from Eukarya and phylogenetic analyses indicate that haloarchaeal KHKs are largely separated from eukaryal KHKs. This is the first report of the identification of KHKs in prokaryotes that form a novel cluster of sugar kinases within the ribokinase/pfkB superfamily.

2.
Mol Microbiol ; 120(2): 224-240, 2023 08.
Article in English | MEDLINE | ID: mdl-37387308

ABSTRACT

The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.


Subject(s)
Archaea , Pyruvate Kinase , Archaea/metabolism , Glycerol , Glucose/metabolism , Fructose/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
4.
Front Bioeng Biotechnol ; 9: 711487, 2021.
Article in English | MEDLINE | ID: mdl-34422783

ABSTRACT

A novel D-lyxose isomerase has been identified within the genome of a hyperthermophilic archaeon belonging to the Thermofilum species. The enzyme has been cloned and over-expressed in Escherichia coli and biochemically characterised. This enzyme differs from other enzymes of this class in that it is highly specific for the substrate D-lyxose, showing less than 2% activity towards mannose and other substrates reported for lyxose isomerases. This is the most thermoactive and thermostable lyxose isomerase reported to date, showing activity above 95°C and retaining 60% of its activity after 60 min incubation at 80°C. This lyxose isomerase is stable in the presence of 50% (v/v) of solvents ethanol, methanol, acetonitrile and DMSO. The crystal structure of the enzyme has been resolved to 1.4-1.7 A. resolution in the ligand-free form and in complexes with both of the slowly reacting sugar substrates mannose and fructose. This thermophilic lyxose isomerase is stabilised by a disulfide bond between the two monomers of the dimeric enzyme and increased hydrophobicity at the dimer interface. These overall properties of high substrate specificity, thermostability and solvent tolerance make this lyxose isomerase enzyme a good candidate for potential industrial applications.

5.
Biology (Basel) ; 10(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947041

ABSTRACT

A novel hyperthermophilic archaeon, termed strain T7324T, was isolated from a mixed sulfate-reducing consortium recovered from hot water produced from a deep North Sea oil reservoir. The isolate is a strict anaerobic chemo-organotroph able to utilize yeast extract or starch as a carbon source. The genes for a number of sugar degradation enzymes and glutamate dehydrogenase previously attributed to the sulfate reducing strain of the consortium (Archaeoglobus fulgidus strain 7324) were identified in the nearly completed genome sequence. Sequence analysis of the 16S rRNA gene placed the strain in the Thermococcus genus, but with an average nucleotide identity that is less than 90% to its closest relatives. Phylogenomic treeing reconstructions placed the strain on a distinct lineage clearly separated from other Thermococcus spp. The results indicate that the strain T7324T represents a novel species, for which the name Thermococcus bergensis sp. nov. is proposed. The type strain is T7324T (=DSM 27149T = KCTC 15808T).

6.
J Bacteriol ; 203(8)2021 03 23.
Article in English | MEDLINE | ID: mdl-33558390

ABSTRACT

The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. Following our previous studies on key enzymes of this pathway, we now focus on the characterization of enzymes involved in 3-phosphoglycerate conversion to pyruvate, in anaplerosis, and in acetyl coenzyme A (acetyl-CoA) formation from pyruvate. These enzymes include phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenolpyruvate carboxylase, and pyruvate-ferredoxin oxidoreductase. The essential function of these enzymes were shown by transcript analyses and growth experiments with respective deletion mutants. Furthermore, we show that H. volcanii-during aerobic growth on glucose-excreted significant amounts of acetate, which was consumed in the stationary phase (acetate switch). The enzyme catalyzing the conversion of acetyl-CoA to acetate as part of the acetate overflow mechanism, an ADP-forming acetyl-CoA synthetase (ACD), was characterized. The functional involvement of ACD in acetate formation and of AMP-forming acetyl-CoA synthetases (ACSs) in activation of excreted acetate was proven by using respective deletion mutants. Together, the data provide a comprehensive analysis of enzymes of the spED pathway and of anaplerosis and report the first genetic evidence of the functional involvement of enzymes of the acetate switch in archaea.IMPORTANCE In this work, we provide a comprehensive analysis of glucose degradation via the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeal model organism Haloferax volcanii The study includes transcriptional analyses, growth experiments with deletion mutants. and characterization of all enzymes involved in the conversion of 3-phosphoglycerate to acetyl coenzyme A (acetyl-CoA) and in anaplerosis. Phylogenetic analyses of several enzymes indicate various lateral gene transfer events from bacteria to haloarchaea. Furthermore, we analyzed the key players involved in the acetate switch, i.e., in the formation (overflow) and subsequent consumption of acetate during aerobic growth on glucose. Together, the data provide novel aspects of glucose degradation, anaplerosis, and acetate switch in H. volcanii and thus expand our understanding of the unusual sugar metabolism in archaea.


Subject(s)
Acetates/metabolism , Glucose/metabolism , Haloferax volcanii/enzymology , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Acetyl Coenzyme A/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Haloferax volcanii/genetics , Haloferax volcanii/growth & development , Haloferax volcanii/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Pyruvic Acid/metabolism
7.
Front Microbiol ; 11: 604926, 2020.
Article in English | MEDLINE | ID: mdl-33343547

ABSTRACT

The haloarchaeon Haloferax volcanii grows on acetate as sole carbon and energy source. The genes and proteins involved in uptake and activation of acetate and in gluconeogenesis were identified and analyzed by characterization of enzymes and by growth experiments with the respective deletion mutants. (i) An acetate transporter of the sodium: solute-symporter family (SSF) was characterized by kinetic analyses of acetate uptake into H. volcanii cells. The functional involvement of the transporter was proven with a Δssf mutant. (ii) Four paralogous AMP-forming acetyl-CoA synthetases that belong to different phylogenetic clades were shown to be functionally involved in acetate activation. (iii) The essential involvement of the glyoxylate cycle as an anaplerotic sequence was concluded from growth experiments with an isocitrate lyase knock-out mutant excluding the operation of the methylaspartate cycle reported for Haloarcula species. (iv) Enzymes involved in phosphoenolpyruvate synthesis from acetate, namely two malic enzymes and a phosphoenolpyruvate synthetase, were identified and characterized. Phylogenetic analyses of haloarchaeal malic enzymes indicate a separate evolutionary line distinct from other archaeal homologs. The exclusive function of phosphoenolpyruvate synthetase in gluconeogenesis was proven by the respective knock-out mutant. Together, this is a comprehensive study of acetate metabolism in archaea.

8.
Extremophiles ; 24(5): 759-772, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32761262

ABSTRACT

The degradation of the pentoses D-xylose, L-arabinose and D-ribose in the domain of archaea, in Haloferax volcanii and in Haloarcula and Sulfolobus species, has been shown to proceed via oxidative pathways to generate α-ketoglutarate. Here, we report that the haloarchaeal Halorhabdus species utilize the bacterial-type non-oxidative degradation pathways for pentoses generating xylulose-5-phosphate. The genes of these pathways are each clustered and were constitutively expressed. Selected enzymes involved in D-xylose degradation, xylose isomerase and xylulokinase, and those involved in L-arabinose degradation, arabinose isomerase and ribulokinase, were characterized. Further, D-ribose degradation in Halorhabdus species involves ribokinase, ribose-5-phosphate isomerase and D-ribulose-5-phosphate-3-epimerase. Ribokinase of Halorhabdus tiamatea and ribose-5-phosphate isomerase of Halorhabdus utahensis were characterized. This is the first report of pentose degradation via the bacterial-type pathways in archaea, in Halorhabdus species that likely acquired these pathways from bacteria. The utilization of bacterial-type pathways of pentose degradation rather than the archaeal oxidative pathways generating α-ketoglutarate might be explained by an incomplete gluconeogenesis in Halorhabdus species preventing the utilization of α-ketoglutarate in the anabolism.


Subject(s)
Arabinose , Halobacteriaceae , Xylose , Arabinose/metabolism , Bacteria , Halobacteriaceae/enzymology , Pentoses , Ribose , Xylose/metabolism
9.
FEMS Microbiol Lett ; 367(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-32055827

ABSTRACT

The haloarchaeon Haloferax volcanii was found to grow on D-galactose as carbon and energy source. Here we report a comprehensive analysis of D-galactose catabolism in H. volcanii. Genome analyses indicated a cluster of genes encoding putative enzymes of the DeLey-Doudoroff pathway for D-galactose degradation including galactose dehydrogenase, galactonate dehydratase, 2-keto-3-deoxygalactonate kinase and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase. The recombinant galactose dehydrogenase and galactonate dehydratase showed high specificity for D-galactose and galactonate, respectively, whereas KDPGal aldolase was promiscuous in utilizing KDPGal and also the C4 epimer 2-keto-3-deoxy-6-phosphogluconate as substrates. Growth studies with knock-out mutants indicated the functional involvement of galactose dehydrogenase, galactonate dehydratase and KDPGal aldolase in D-galactose degradation. Further, the transcriptional regulator GacR was identified, which was characterized as an activator of genes of the DeLey-Doudoroff pathway. Finally, genes were identified encoding components of an ABC transporter and a knock-out mutant of the substrate binding protein indicated the functional involvement of this transporter in D-galactose uptake. This is the first report of D-galactose degradation via the DeLey-Doudoroff pathway in the domain of archaea.


Subject(s)
Galactose/metabolism , Genes, Archaeal/genetics , Haloferax volcanii , Metabolic Networks and Pathways/genetics , Carbohydrate Metabolism/genetics , Enzymes/genetics , Enzymes/metabolism , Gene Knockout Techniques , Haloferax volcanii/enzymology , Haloferax volcanii/genetics
10.
J Bacteriol ; 202(3)2020 01 15.
Article in English | MEDLINE | ID: mdl-31712277

ABSTRACT

The Haloarcula species H. marismortui and H. hispanica were found to grow on d-ribose, d-xylose, and l-arabinose. Here, we report the discovery of a novel promiscuous oxidative pathway of pentose degradation based on genome analysis, identification and characterization of enzymes, transcriptional analysis, and growth experiments with knockout mutants. Together, the data indicate that in Haloarcula spp., d-ribose, d-xylose, and l-arabinose were degraded to α-ketoglutarate involving the following enzymes: (i) a promiscuous pentose dehydrogenase that catalyzed the oxidation of d-ribose, d-xylose, and l-arabinose; (ii) a promiscuous pentonolactonase that was involved in the hydrolysis of ribonolactone, xylonolactone, and arabinolactone; (iii) a highly specific dehydratase, ribonate dehydratase, which catalyzed the dehydration of ribonate, and a second enzyme, a promiscuous xylonate/gluconate dehydratase, which was involved in the conversion of xylonate, arabinonate, and gluconate. Phylogenetic analysis indicated that the highly specific ribonate dehydratase constitutes a novel sugar acid dehydratase family within the enolase superfamily; and (iv) finally, 2-keto-3-deoxypentanonate dehydratase and α-ketoglutarate semialdehyde dehydrogenase catalyzed the conversion of 2-keto-3-deoxypentanonate to α-ketoglutarate via α-ketoglutarate semialdehyde. We conclude that the expanded substrate specificities of the pentose dehydrogenase and pentonolactonase toward d-ribose and ribonolactone, respectively, and the presence of a highly specific ribonate dehydratase are prerequisites of the oxidative degradation of d-ribose in Haloarcula spp. This is the first characterization of an oxidative degradation pathway of d-ribose to α-ketoglutarate in archaea.IMPORTANCE The utilization and degradation of d-ribose in archaea, the third domain of life, have not been analyzed so far. We show that Haloarcula species utilize d-ribose, which is degraded to α-ketoglutarate via a novel oxidative pathway. Evidence is presented that the oxidative degradation of d-ribose involves novel promiscuous enzymes, pentose dehydrogenase and pentonolactonase, and a novel sugar acid dehydratase highly specific for ribonate. This is the first report of an oxidative degradation pathway of d-ribose in archaea, which differs from the canonical nonoxidative pathway of d-ribose degradation reported for most bacteria. The data contribute to our understanding of the unusual sugar degradation pathways and enzymes in archaea.


Subject(s)
Archaea/metabolism , Haloarcula/metabolism , Ribose/metabolism , Arabinose/metabolism , Oxidation-Reduction , Xylose/metabolism
11.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Article in English | MEDLINE | ID: mdl-31089701

ABSTRACT

Haloferax volcanii degrades D-xylose and L-arabinose via an oxidative pathway to α-ketoglutarate as an intermediate. The enzymes of this pathway are encoded by the xac gene cluster (xylose and arabinose catabolism) which also contains genes (xacGHIJK) that encode all components of a putative ABC transporter. The xacGHIJK genes encode one substrate binding protein, two transmembrane domains and two nucleotide binding domains. It is shown here, that xacGHIJK is upregulated by both D-xylose and L-arabinose mediated by the transcriptional regulator XacR, the general regulator of xac genes. Knock-out mutants of xacG and of xacGHIJK resulted in a reduced growth rate on both pentoses; wild type growth could be recovered by complementation in trans. Together, the data indicate that uptake of xylose and arabinose in H. volcanii is mediated by this ABC transporter. Pentose specific ABC transporters, homologous to that of H. volcanii, were identified in other haloarchaea suggesting a similar function in pentose uptake in these archaea. Sequence analyses attribute the haloarchaeal pentose ABC transporter to the CUT1 (carbohydrate uptake transporter 1) subfamily.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Arabinose/metabolism , Archaeal Proteins/metabolism , Haloferax volcanii/metabolism , Xylose/metabolism , ATP-Binding Cassette Transporters/genetics , Archaeal Proteins/genetics , Carbohydrate Metabolism , Gene Knockout Techniques , Haloferax volcanii/genetics , Multigene Family , Oxidation-Reduction , Sequence Analysis, DNA , Transcriptional Activation
13.
FEBS J ; 286(13): 2471-2489, 2019 07.
Article in English | MEDLINE | ID: mdl-30945446

ABSTRACT

Pyruvate kinases (PKs) synthesize ATP as the final step of glycolysis in the three domains of life. PKs from most bacteria and eukarya are allosteric enzymes that are activated by sugar phosphates; for example, the feed-forward regulator fructose-1,6-bisphosphate, or AMP as a sensor of energy charge. Archaea utilize unusual glycolytic pathways, but the allosteric properties of PKs from these species are largely unknown. Here, we present an analysis of 24 PKs from most archaeal clades with respect to allosteric properties, together with phylogenetic analyses constructed using a novel mode of rooting protein trees. We find that PKs from many Thermoproteales, an order of crenarchaeota, are allosterically activated by 3-phosphoglycerate (3PG). We also identify five conserved amino acids that form the binding pocket for 3PG. 3PG is generated via an irreversible reaction in the modified glycolytic pathway of these archaea and therefore functions as a feed-forward regulator. We also show that PKs from hyperthermophilic Methanococcales, an order of euryarchaeota, are activated by AMP. Phylogenetic analyses indicate that 3PG-activated PKs form an evolutionary lineage that is distinct from that of sugar-phosphate activated PKs, and that sugar phosphate-activated PKs originated as AMP-regulated PKs in hyperthermophilic Methanococcales. Since the phospho group of sugar phosphates and 3PG overlap in the allosteric site, our data indicate that the allostery in PKs first started from a progenitor phosphate-binding site that evolved in two spatially distinct directions: one direction generated the canonical site that responds to sugar phosphates and the other gave rise to the 3PG site present in Thermoproteales. Overall, our data suggest an intimate connection between the allosteric properties and evolution of PKs.


Subject(s)
Allosteric Site , Archaeal Proteins/metabolism , Evolution, Molecular , Pyruvate Kinase/metabolism , Allosteric Regulation , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Phylogeny , Pyruvate Kinase/chemistry , Pyruvate Kinase/genetics , Thermoproteus/classification , Thermoproteus/enzymology , Thermoproteus/genetics
14.
Article in English | MEDLINE | ID: mdl-30733943

ABSTRACT

Two new thermophilic branched chain amino acid transaminases have been identified within the genomes of different hyper-thermophilic archaea, Geoglobus acetivorans, and Archaeoglobus fulgidus. These enzymes belong to the class IV of transaminases as defined by their structural fold. The enzymes have been cloned and over-expressed in Escherichia coli and the recombinant enzymes have been characterized both biochemically and structurally. Both enzymes showed high thermostability with optimal temperature for activity at 80 and 85°C, respectively. They retain good activity after exposure to 50% of the organic solvents, ethanol, methanol, DMSO and acetonitrile. The enzymes show a low activity to (R)-methylbenzylamine but no activity to (S)-methylbenzylamine. Both enzymes have been crystallized and their structures solved in the internal aldimine form, to 1.9 Å resolution for the Geoglobus enzyme and 2.0 Å for the Archaeoglobus enzyme. Also the Geoglobus enzyme structure has been determined in complex with the amino acceptor α-ketoglutarate and the Archaeoglobus enzyme in complex with the inhibitor gabaculine. These two complexes have helped to determine the conformation of the enzymes during enzymatic turnover and have increased understanding of their substrate specificity. A comparison has been made with another (R) selective class IV transaminase from the fungus Nectria haematococca which was previously studied in complex with gabaculine. The subtle structural differences between these enzymes has provided insight regarding their different substrate specificities.

15.
Mol Microbiol ; 111(4): 1093-1108, 2019 04.
Article in English | MEDLINE | ID: mdl-30707467

ABSTRACT

The halophilic archaeon Haloferax volcanii utilizes l-rhamnose as a sole carbon and energy source. It is shown that l-rhamnose is taken up by an ABC transporter and is oxidatively degraded to pyruvate and l-lactate via the diketo-hydrolase pathway. The genes involved in l-rhamnose uptake and degradation form a l-rhamnose catabolism (rhc) gene cluster. The rhc cluster also contains a gene, rhcR, that encodes the transcriptional regulator RhcR which was characterized as an activator of all rhc genes. 2-keto-3-deoxy-l-rhamnonate, a metabolic intermediate of l-rhamnose degradation, was identified as inducer molecule of RhcR. The essential function of rhc genes for uptake and degradation of l-rhamnose was proven by the respective knockout mutants. Enzymes of the diketo-hydrolase pathway, including l-rhamnose dehydrogenase, l-rhamnonolactonase, l-rhamnonate dehydratase, 2-keto-3-deoxy-l-rhamnonate dehydrogenase and 2,4-diketo-3-deoxy-l-rhamnonate hydrolase, were characterized. Further, genes of the diketo-hydrolase pathway were also identified in the hyperthermophilic crenarchaeota Vulcanisaeta distributa and Sulfolobus solfataricus and selected enzymes were characterized, indicating the presence of the diketo-hydrolase pathway in these archaea. Together, this is the first comprehensive description of l-rhamnose catabolism in the domain of archaea.


Subject(s)
Genes, Archaeal , Haloferax volcanii/enzymology , Haloferax volcanii/genetics , Rhamnose/metabolism , ATP-Binding Cassette Transporters/metabolism , Carbohydrate Dehydrogenases/metabolism , Carbohydrate Metabolism , Multigene Family , Oxidoreductases/metabolism , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism
16.
Biochemistry ; 57(26): 3797-3806, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29812914

ABSTRACT

The thermoacidophilic archaea Picrophilus torridus and Sulfolobus solfataricus catabolize glucose via a nonphosphorylative Entner-Doudoroff pathway and a branched Entner-Doudoroff pathway, respectively. Key enzymes for these Entner-Doudoroff pathways are the aldolases, 2-keto-3-deoxygluconate aldolase (KDG-aldolase) and 2-keto-3-deoxy-6-phosphogluconate aldolase [KD(P)G-aldolase]. KDG-aldolase from P. torridus (Pt-KDG-aldolase) is highly specific for the nonphosphorylated substrate, 2-keto-3-deoxygluconate (KDG), whereas KD(P)G-aldolase from S. solfataricus [Ss-KD(P)G-aldolase] is an enzyme that catalyzes the cleavage of both KDG and 2-keto-3-deoxy-6-phosphogluconate (KDPG), with a preference for KDPG. The structural basis for the high specificity of Pt-KDG-aldolase for KDG as compared to the more promiscuous Ss-KD(P)G-aldolase has not been analyzed before. In this work, we report the elucidation of the structure of Ss-KD(P)G-aldolase in complex with KDPG at 2.35 Å and that of KDG-aldolase from P. torridus at 2.50 Å resolution. By superimposition of the active sites of the two enzymes, and subsequent site-directed mutagenesis studies, a network of four amino acids, namely, Arg106, Tyr132, Arg237, and Ser241, was identified in Ss-KD(P)G-aldolase that interact with the negatively charged phosphate group of KDPG, thereby increasing the affinity of the enzyme for KDPG. This KDPG-binding network is absent in Pt-KDG-aldolase, which explains the low catalytic efficiency of KDPG cleavage.


Subject(s)
Aldehyde-Lyases/chemistry , Archaeal Proteins/chemistry , Gluconates/chemistry , Sulfolobus solfataricus/enzymology , Thermoplasmales/enzymology , Models, Molecular , Protein Domains , Structure-Activity Relationship
17.
FEBS Lett ; 592(9): 1524-1534, 2018 05.
Article in English | MEDLINE | ID: mdl-29572819

ABSTRACT

The halophilic archaeon Haloferax volcanii degrades glucose via the semiphosphorylative Entner-Doudoroff pathway and can also grow on gluconeogenic substrates. Here, the enzymes catalysing the conversion of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate were analysed. The genome contains the genes gapI and gapII encoding two putative GAP dehydrogenases, and pgk encoding phosphoglycerate kinase (PGK). We show that gapI is functionally involved in sugar catabolism, whereas gapII is involved in gluconeogenesis. For pgk, an amphibolic function is indicated. This is the first report of the functional involvement of a phosphorylating glyceraldehyde-3-phosphate dehydrogenase and PGK in sugar catabolism in archaea. Phylogenetic analyses indicate that the catabolic gapI from H. volcanii is acquired from bacteria via lateral genetransfer, whereas the anabolic gapII as well as pgk are of archaeal origin.


Subject(s)
Gluconeogenesis , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis , Haloferax volcanii/metabolism , Gene Knockout Techniques , Glyceraldehyde-3-Phosphate Dehydrogenases/deficiency , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Haloferax volcanii/enzymology
18.
Stand Genomic Sci ; 12: 79, 2017.
Article in English | MEDLINE | ID: mdl-29270248

ABSTRACT

Archaeoglobus fulgidus is the type species of genus Archaeoglobus Stetter 1998, a hyperthermophilic sulfate reducing group within the Archaeoglobi class of the euryarchaeota phylum. Members of this genus grow heterotrophically or chemolithoautotrophically with sulfate or thiosulfate as electron acceptors. Except for A. fulgidus strain 7324 and the candidate species "Archaeoglobus lithotrophicus", which both originate from deep oil-fields, the other members of this genus have been recovered from marine hydrothermal systems. Here we describe the features of the A. fulgidus strain 7324 genome as compared to the A. fulgidus VC16 type strain. The 2.3 Mbp genome sequence of strain 7324 shares about 93.5% sequence identity with that of strain VC16T but is about 138 Kbp longer, which is mostly due to two large 'insertions' carrying one extra cdc6 (cell-cycle control protein 6) gene, extra CRISPR elements and mobile genetic elements, a high-GC ncRNA gene (hgcC) and a large number of hypothetical gene functions. A comparison with four other Archaeoglobus spp. genomes identified 1001 core Archaeoglobus genes and more than 2900 pan-genome orthologous genes.

19.
Front Microbiol ; 8: 1683, 2017.
Article in English | MEDLINE | ID: mdl-28932214

ABSTRACT

Growth on acetate or other acetyl-CoA-generating substrates as a sole source of carbon requires an anaplerotic pathway for the conversion of acetyl-CoA into cellular building blocks. Haloarchaea (class Halobacteria) possess two different anaplerotic pathways, the classical glyoxylate cycle and the novel methylaspartate cycle. The methylaspartate cycle was discovered in Haloarcula spp. and operates in ∼40% of sequenced haloarchaea. In this cycle, condensation of one molecule of acetyl-CoA with oxaloacetate gives rise to citrate, which is further converted to 2-oxoglutarate and then to glutamate. The following glutamate rearrangement and deamination lead to mesaconate (methylfumarate) that needs to be activated to mesaconyl-C1-CoA and hydrated to ß-methylmalyl-CoA. The cleavage of ß-methylmalyl-CoA results in the formation of propionyl-CoA and glyoxylate. The carboxylation of propionyl-CoA and the condensation of glyoxylate with another acetyl-CoA molecule give rise to two C4-dicarboxylic acids, thus regenerating the initial acetyl-CoA acceptor and forming malate, its final product. Here we studied two enzymes of the methylaspartate cycle from Haloarcula hispanica, succinyl-CoA:mesaconate CoA-transferase (mesaconate CoA-transferase, Hah_1336) and mesaconyl-CoA hydratase (Hah_1340). Their genes were heterologously expressed in Haloferax volcanii, and the corresponding enzymes were purified and characterized. Mesaconate CoA-transferase was specific for its physiological substrates, mesaconate and succinyl-CoA, and produced only mesaconyl-C1-CoA and no mesaconyl-C4-CoA. Mesaconyl-CoA hydratase had a 3.5-fold bias for the physiological substrate, mesaconyl-C1-CoA, compared to mesaconyl-C4-CoA, and virtually no activity with other tested enoyl-CoA/3-hydroxyacyl-CoA compounds. Our results further prove the functioning of the methylaspartate cycle in haloarchaea and suggest that mesaconate CoA-transferase and mesaconyl-CoA hydratase can be regarded as characteristic enzymes of this cycle.

20.
FEMS Microbiol Lett ; 364(13)2017 07 06.
Article in English | MEDLINE | ID: mdl-28854683

ABSTRACT

Haloferax volcanii degrades the pentoses D-xylose and L-arabinose via an oxidative pathway to α-ketoglutarate as an intermediate. The initial dehydrogenases of the pathway, D-xylose dehydrogenase (XDH) and L-arabinose dehydrogenase (L-AraDH) catalyze the NADP+ dependent D-xylose and L-arabinose oxidation. It is shown here that the pentoses are oxidized to the corresponding lactones, D-xylono-γ-lactone and L-arabino-γ-lactone, rather than to the respective sugar acids. A putative lactonase gene, xacC, located in genomic vicinity of XDH and L-AraDH, was found to be transcriptionally upregulated by both D-xylose and L-arabinose mediated by the pentose-specific regulator XacR. The recombinant lactonase catalyzed the hydrolysis of D-xylono-γ-lactone and L-arabino-γ-lactone. This is the first report of a functional lactonase involved in sugar catabolism in the domain of archaea.


Subject(s)
Arabinose/metabolism , Esterases/metabolism , Haloferax volcanii/enzymology , Xylose/metabolism , Acyl-Butyrolactones/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/metabolism , Esterases/genetics , Hydrolysis , Ketoglutaric Acids/metabolism , Mutation , Oxidation-Reduction , RNA/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...