Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 12(1): 1731938, 2020.
Article in English | MEDLINE | ID: mdl-32151188

ABSTRACT

Bispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times. While high throughput screening for small molecules and classical antibodies has evolved into a mature discipline in the pharmaceutical industry, dual-targeting antibody screening methodologies lack the ability to fully evaluate the tremendous number of possible combinations and cover only a limited portion of the combinatorial screening space. Here, we propose a novel combinatorial screening approach for bispecific IgG-like antibodies to extenuate screening limitations in industrial scale, expanding the limiting screening space. Harnessing the ability of a protein trans-splicing reaction by the split intein Npu DnaE, antibody fragments were reconstituted within the hinge region in vitro. This method allows for fully automated, rapid one-pot antibody reconstitution, providing biological activity in several biochemical and functional assays. The technology presented here is suitable for automated functional and combinatorial high throughput screening of bispecific antibodies.


Subject(s)
Antibodies, Bispecific/analysis , High-Throughput Screening Assays/methods , Inteins , Animals , Humans , Protein Engineering/methods
2.
Front Microbiol ; 10: 600, 2019.
Article in English | MEDLINE | ID: mdl-30972049

ABSTRACT

Aspergillus fumigatus is an airborne opportunistic fungal pathogen responsible for severe infections. Among them, invasive pulmonary aspergillosis has become a major concern as mortality rates exceed 50% in immunocompromised hosts. In parallel, allergic bronchopulmonary aspergillosis frequently encountered in cystic fibrosis patients, is also a comorbidity factor. Current treatments suffer from high toxicity which prevents their use in weakened subjects, resulting in impaired prognostic. Because of their low toxicity and high specificity, anti-infectious therapeutic antibodies could be a new alternative to conventional therapeutics. In this study, we investigated the potential of Chitin Ring Formation cell wall transglycosylases of A. fumigatus to be therapeutic targets for therapeutic antibodies. We demonstrated that the Crf target was highly conserved, regardless of the pathophysiological context; whereas the CRF1 gene was found to be 100% conserved in 92% of the isolates studied, Crf proteins were expressed in 98% of the strains. In addition, we highlighted the role of Crf proteins in fungal growth, using a deletion mutant for CRF1 gene, for which a growth decrease of 23.6% was observed after 48 h. It was demonstrated that anti-Crf antibodies neutralized the enzymatic activity of recombinant Crf protein, and delayed fungal growth by 12.3% in vitro when added to spores. In a neutropenic rat model of invasive pulmonary aspergillosis, anti-Crf antibodies elicited a significant recruitment of neutrophils, macrophages and T CD4 lymphocytes but it was not correlated with a decrease of fungal burden in lungs and improvement in survival. Overall, our study highlighted the potential relevance of targeting Crf cell wall protein (CWP) with therapeutic antibodies.

3.
BMC Biotechnol ; 15: 10, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25888378

ABSTRACT

BACKGROUND: Antibody phage display is a proven key technology that allows the generation of human antibodies for diagnostics and therapy. From naive antibody gene libraries - in theory - antibodies against any target can be selected. Here we describe the design, construction and characterization of an optimized antibody phage display library. RESULTS: The naive antibody gene libraries HAL9 and HAL10, with a combined theoretical diversity of 1.5×10(10) independent clones, were constructed from 98 healthy donors using improved phage display vectors. In detail, most common phagemids employed for antibody phage display are using a combined His/Myc tag for detection and purification. We show that changing the tag order to Myc/His improved the production of soluble antibodies, but did not affect antibody phage display. For several published antibody libraries, the selected number of kappa scFvs were lower compared to lambda scFvs, probably due to a lower kappa scFv or Fab expression rate. Deletion of a phenylalanine at the end of the CL linker sequence in our new phagemid design increased scFv production rate and frequency of selected kappa antibodies significantly. The HAL libraries and 834 antibodies selected against 121 targets were analyzed regarding the used germline V-genes, used V-gene combinations and CDR-H3/-L3 length and composition. The amino acid diversity and distribution in the CDR-H3 of the initial library was retrieved in the CDR-H3 of selected antibodies showing that all CDR-H3 amino acids occurring in the human antibody repertoire can be functionally used and is not biased by E. coli expression or phage selection. Further, the data underline the importance of CDR length variations. CONCLUSION: The highly diverse universal antibody gene libraries HAL9/10 were constructed using an optimized scFv phagemid vector design. Analysis of selected antibodies revealed that the complete amino acid diversity in the CDR-H3 was also found in selected scFvs showing the functionality of the naive CDR-H3 diversity.


Subject(s)
Peptide Library , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/genetics , Amino Acid Sequence , Autoantigens/chemistry , Autoantigens/immunology , Bacteriophages/genetics , Bacteriophages/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/immunology , Single-Chain Antibodies/chemistry
4.
J Immunol ; 193(7): 3332-43, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25172488

ABSTRACT

CD4(+) T cells orchestrate immune responses against fungi, such as Aspergillus fumigatus, a major fungal pathogen in humans. The complexity of the fungal genome and lifestyle questions the existence of one or a few immune-dominant Ags and complicates systematic screening for immunogenic Ags useful for immunotherapy or diagnostics. In this study, we used a recently developed flow cytometric assay for the direct ex vivo characterization of A. fumigatus-specific CD4(+) T cells for rapid identification of physiological T cell targets in healthy donors. We show that the T cell response is primarily directed against metabolically active A. fumigatus morphotypes and is stronger against membrane protein fractions compared with cell wall or cytosolic proteins. Further analysis of 15 selected single A. fumigatus proteins revealed a highly diverse reactivity pattern that was donor and protein dependent. Importantly, the parallel assessment of T cell frequency, phenotype, and function allowed us to differentiate between proteins that elicit strong memory T cell responses in vivo versus Ags that induce T cell exhaustion or no reactivity in vivo. The regulatory T cell (Treg) response mirrors the conventional T cell response in terms of numbers and target specificity. Thus, our data reveal that the fungal T cell immunome is complex, but the ex vivo characterization of reactive T cells allows us to classify Ags and to predict potential immunogenic targets. A. fumigatus-specific conventional T cell responses are counterbalanced by a strong Treg response, suggesting that Treg-depletion strategies may be helpful in improving antifungal immunity.


Subject(s)
Antigens, Fungal/immunology , Aspergillosis/immunology , Aspergillus fumigatus/immunology , Immunologic Memory , T-Lymphocytes, Regulatory/immunology , Aspergillosis/pathology , Aspergillosis/therapy , Female , Humans , Male , T-Lymphocytes, Regulatory/pathology
5.
Molecules ; 16(1): 412-26, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21221060

ABSTRACT

Twenty years after its development, antibody phage display using filamentous bacteriophage represents the most successful in vitro antibody selection technology. Initially, its development was encouraged by the unique possibility of directly generating recombinant human antibodies for therapy. Today, antibody phage display has been developed as a robust technology offering great potential for automation. Generation of monospecific binders provides a valuable tool for proteome research, leading to highly enhanced throughput and reduced costs. This review presents the phage display technology, application areas of antibodies in research, diagnostics and therapy and the use of antibody phage display for these applications.


Subject(s)
Antibodies/genetics , Bacteriophages/genetics , Proteome , Automation , Bacteriophages/immunology , Diagnosis , Humans , Therapeutics
6.
J Biotechnol ; 152(4): 159-70, 2011 Apr 10.
Article in English | MEDLINE | ID: mdl-20883731

ABSTRACT

The functional decryption of the human proteome is the challenge which follows the sequencing of the human genome. Specific binders to every human protein are key reagents for this purpose. In vitro antibody selection using phage display offers one possible solution that can meet the demand for 25,000 or more antibodies, but needs substantial standardisation and minimalisation. To evaluate this potential, three human, naive antibody gene libraries (HAL4/7/8) were constructed and a standardised antibody selection pipeline was set up. The quality of the libraries and the selection pipeline was validated with 110 antigens, including human, other mammalian, fungal or bacterial proteins, viruses or haptens. Furthermore, the abundance of VH, kappa and lambda subfamilies during library cloning and the E. coli based phage display system on library packaging and the selection of scFvs was evaluated from the analysis of 435 individual antibodies, resulting in the first comprehensive comparison of V gene subfamily use for all steps of an antibody phage display pipeline. Further, a compatible cassette vector set for E. coli and mammalian expression of antibody fragments is described, allowing in vivo biotinylation, enzyme fusion and Fc fusion.


Subject(s)
Biotechnology/methods , Gene Library , Proteomics/methods , Single-Chain Antibodies/biosynthesis , Cell Line , DNA Primers/genetics , Escherichia coli , Genetic Vectors/genetics , Humans
7.
PLoS One ; 4(8): e6625, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19675673

ABSTRACT

BACKGROUND: Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA) in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. RESULTS: The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16) which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs) were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. CONCLUSION: Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.


Subject(s)
Antibodies/immunology , Aspergillosis/diagnosis , Aspergillus fumigatus/isolation & purification , Membrane Proteins/immunology , RNA Splicing , Amino Acid Sequence , Animals , Aspergillosis/microbiology , Aspergillus fumigatus/immunology , Base Sequence , DNA, Complementary , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Fungal Proteins/chemistry , Fungal Proteins/immunology , Humans , Membrane Proteins/genetics , Mice , Molecular Sequence Data , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...