Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Nature ; 630(8015): 149-157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778096

ABSTRACT

Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.


Subject(s)
Aneuploidy , Proteasome Endopeptidase Complex , Proteolysis , Proteome , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Dosage Compensation, Genetic , Genetic Variation , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Proteome/metabolism , Proteome/genetics , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination , Gene Expression Profiling , Genomics
2.
Proc Natl Acad Sci U S A ; 121(19): e2319211121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696467

ABSTRACT

Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.


Subject(s)
Gene Expression Regulation, Fungal , Proteome , Quantitative Trait Loci , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Proteome/genetics , Proteome/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genetic Variation , Proteomics/methods , Genotype , Phenotype , Gene Expression Profiling/methods
3.
Nat Genet ; 56(6): 1278-1287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778243

ABSTRACT

Gene expression is an essential step in the translation of genotypes into phenotypes. However, little is known about the transcriptome architecture and the underlying genetic effects at the species level. Here we generated and analyzed the pan-transcriptome of ~1,000 yeast natural isolates across 4,977 core and 1,468 accessory genes. We found that the accessory genome is an underappreciated driver of transcriptome divergence. Global gene expression patterns combined with population structure showed that variation in heritable expression mainly lies within subpopulation-specific signatures, for which accessory genes are overrepresented. Genome-wide association analyses consistently highlighted that accessory genes are associated with proportionally more variants with larger effect sizes, illustrating the critical role of the accessory genome on the transcriptional landscape within and between populations.


Subject(s)
Gene Expression Regulation, Fungal , Genome, Fungal , Genome-Wide Association Study , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/genetics , Genetic Variation , Gene Expression Profiling/methods , Genotype , Polymorphism, Single Nucleotide
4.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478689

ABSTRACT

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Chromosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Homologous Recombination/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
Mol Syst Biol ; 20(4): 362-373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355920

ABSTRACT

Unraveling the genetic sources of gene expression variation is essential to better understand the origins of phenotypic diversity in natural populations. Genome-wide association studies identified thousands of variants involved in gene expression variation, however, variants detected only explain part of the heritability. In fact, variants such as low-frequency and structural variants (SVs) are poorly captured in association studies. To assess the impact of these variants on gene expression variation, we explored a half-diallel panel composed of 323 hybrids originated from pairwise crosses of 26 natural Saccharomyces cerevisiae isolates. Using short- and long-read sequencing strategies, we established an exhaustive catalog of single nucleotide polymorphisms (SNPs) and SVs for this panel. Combining this dataset with the transcriptomes of all hybrids, we comprehensively mapped SNPs and SVs associated with gene expression variation. While SVs impact gene expression variation, SNPs exhibit a higher effect size with an overrepresentation of low-frequency variants compared to common ones. These results reinforce the importance of dissecting the heritability of complex traits with a comprehensive catalog of genetic variants at the population level.


Subject(s)
Genome-Wide Association Study , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression , Polymorphism, Single Nucleotide/genetics , Genetic Variation
6.
Nucleic Acids Res ; 52(5): 2434-2445, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38261993

ABSTRACT

Gene expression is known to vary among individuals, and this variability can impact the phenotypic diversity observed in natural populations. While the transcriptome and proteome have been extensively studied, little is known about the translation process itself. Here, we therefore performed ribosome and transcriptomic profiling on a genetically and ecologically diverse set of natural isolates of the Saccharomyces cerevisiae yeast. Interestingly, we found that the Euclidean distances between each profile and the expression fold changes in each pairwise isolate comparison were higher at the transcriptomic level. This observation clearly indicates that the transcriptional variation observed in the different isolates is buffered through a phenomenon known as post-transcriptional buffering at the translation level. Furthermore, this phenomenon seemed to have a specific signature by preferentially affecting essential genes as well as genes involved in complex-forming proteins, and low transcribed genes. We also explored the translation of the S. cerevisiae pangenome and found that the accessory genes related to introgression events displayed similar transcription and translation levels as the core genome. By contrast, genes acquired through horizontal gene transfer events tended to be less efficiently translated. Together, our results highlight both the extent and signature of the post-transcriptional buffering.


Subject(s)
Saccharomyces cerevisiae , Transcriptome , Humans , Saccharomyces cerevisiae/genetics , Gene Expression Profiling , Ribosomes/genetics , Genetic Background , Genetic Variation
7.
Cell Genom ; 4(1): 100459, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38190102

ABSTRACT

Gene expression variation, an essential step between genotype and phenotype, is collectively controlled by local (cis) and distant (trans) regulatory changes. Nevertheless, how these regulatory elements differentially influence gene expression variation remains unclear. Here, we bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids originating from genetically divergent Saccharomyces cerevisiae isolates. Our analysis across 5,087 transcript abundance traits showed that non-additive components account for 36% of the gene expression variance on average. By comparing allele-specific read counts in parent-hybrid trios, we found that trans-regulatory changes underlie the majority of gene expression variation in the population. Remarkably, most cis-regulatory variations are also exaggerated or attenuated by additional trans effects. Overall, we showed that the transcriptome is globally buffered at the genetic level mainly due to trans-regulatory variation in the population.


Subject(s)
Saccharomyces cerevisiae , Transcriptome , Transcriptome/genetics , Saccharomyces cerevisiae/genetics , Alleles , Phenotype , Genotype
8.
PLoS Genet ; 20(1): e1011119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236897

ABSTRACT

Assessing the complexity and expressivity of traits at the species level is an essential first step to better dissect the genotype-phenotype relationship. As trait complexity behaves dynamically, the classic dichotomy between monogenic and complex traits is too simplistic. However, no systematic assessment of this complexity spectrum has been carried out on a population scale to date. In this context, we generated a large diallel hybrid panel composed of 190 unique hybrids coming from 20 natural isolates representative of the S. cerevisiae genetic diversity. For each of these hybrids, a large progeny of 160 individuals was obtained, leading to a total of 30,400 offspring individuals. Their mitotic growth was evaluated on 38 conditions inducing various cellular stresses. We developed a classification algorithm to analyze the phenotypic distributions of offspring and assess the trait complexity. We clearly found that traits are mainly complex at the population level. On average, we found that 91.2% of cross/trait combinations exhibit high complexity, while monogenic and oligogenic cases accounted for only 4.1% and 4.7%, respectively. However, the complexity spectrum is very dynamic, trait specific and tightly related to genetic backgrounds. Overall, our study provided greater insight into trait complexity as well as the underlying genetic basis of its spectrum in a natural population.


Subject(s)
Quantitative Trait Loci , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Quantitative Trait Loci/genetics , Genetic Variation , Phenotype
9.
Genome Res ; 33(8): 1340-1353, 2023 08.
Article in English | MEDLINE | ID: mdl-37652668

ABSTRACT

Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.


Subject(s)
DNA Copy Number Variations , Genome , Humans , Gene Dosage , Mutation , Saccharomyces cerevisiae/genetics , Aneuploidy
10.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546809

ABSTRACT

Gene expression variation, an essential step between genomic variation and phenotypic landscape, is collectively controlled by local (cis) and distant (trans) regulatory changes. Nevertheless, how these regulatory elements differentially influence the heritability of expression traits remains unclear. Here, we bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids originated from genetically divergent yeast isolates. We estimated the broad- and narrow-sense heritability across 5,087 transcript abundance traits and showed that non-additive components account for 36% of the phenotypic variance on average. By comparing allelic expression ratios in the hybrid and the corresponding parental pair, we identified regulatory changes in 25% of all cases, with a majority acting in trans. We further showed that trans-regulation could underlie coordinated expression variation across highly connected genes, resulting in significantly higher non-additive variance and most likely in some of the missing heritability of gene expression traits.

11.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37503053

ABSTRACT

Unraveling the genetic sources of gene expression variation is essential to better understand the origins of phenotypic diversity in natural populations. Genome-wide association studies identified thousands of variants involved in gene expression variation, however, variants detected only explain part of the heritability. In fact, variants such as low-frequency and structural variants (SVs) are poorly captured in association studies. To assess the impact of these variants on gene expression variation, we explored a half-diallel panel composed of 323 hybrids originated from pairwise crosses of 26 natural Saccharomyces cerevisiae isolates. Using short- and long-read sequencing strategies, we established an exhaustive catalog of single nucleotide polymorphisms (SNPs) and SVs for this panel. Combining this dataset with the transcriptomes of all hybrids, we comprehensively mapped SNPs and SVs associated with gene expression variation. While SVs impact gene expression variation, SNPs exhibit a higher effect size with an overrepresentation of low-frequency variants compared to common ones. These results reinforce the importance of dissecting the heritability of complex traits with a comprehensive catalog of genetic variants at the population level.

12.
Nat Genet ; 55(8): 1390-1399, 2023 08.
Article in English | MEDLINE | ID: mdl-37524789

ABSTRACT

Pangenomes provide access to an accurate representation of the genetic diversity of species, both in terms of sequence polymorphisms and structural variants (SVs). Here we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising reference-quality genomes for 142 strains representing the species' phylogenetic and ecological diversity. The ScRAP includes phased haplotype assemblies for several heterozygous diploid and polyploid isolates. We identified circa (ca.) 4,800 nonredundant SVs that provide a broad view of the genomic diversity, including the dynamics of telomere length and transposable elements. We uncovered frequent cases of complex aneuploidies where large chromosomes underwent large deletions and translocations. We found that SVs can impact gene expression near the breakpoints and substantially contribute to gene repertoire evolution. We also discovered that horizontally acquired regions insert at chromosome ends and can generate new telomeres. Overall, the ScRAP demonstrates the benefit of a pangenome in understanding genome evolution at population scale.


Subject(s)
Genome , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Phylogeny , Genomics , Telomere/genetics
13.
G3 (Bethesda) ; 13(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37226280

ABSTRACT

Gene expression variation can provide an overview of the changes in regulatory networks that underlie phenotypic diversity. Certain evolutionary trajectories such as polyploidization events can have an impact on the transcriptional landscape. Interestingly, the evolution of the yeast species Brettanomyces bruxellensis has been punctuated by diverse allopolyploidization events leading to the coexistence of a primary diploid genome associated with various haploid acquired genomes. To assess the impact of these events on gene expression, we generated and compared the transcriptomes of a set of 87 B. bruxellensis isolates, selected as being representative of the genomic diversity of this species. Our analysis revealed that acquired subgenomes strongly impact the transcriptional patterns and allow discrimination of allopolyploid populations. In addition, clear transcriptional signatures related to specific populations have been revealed. The transcriptional variations observed are related to some specific biological processes such as transmembrane transport and amino acids metabolism. Moreover, we also found that the acquired subgenome causes the overexpression of some genes involved in the production of flavor-impacting secondary metabolites, especially in isolates of the beer population.


Subject(s)
Brettanomyces , Brettanomyces/genetics , Brettanomyces/metabolism , Genome , Genomics
14.
Genome Biol Evol ; 15(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36634937

ABSTRACT

The process of domestication has variable consequences on genome evolution leading to different phenotypic signatures. Access to the complete genome sequences of a large number of individuals makes it possible to explore the different facets of this domestication process. Here, we sought to explore the genome evolution of Kluyveromyces lactis, a yeast species well known for its involvement in dairy processes and also present in natural environments. Using a combination of short- and long-read sequencing strategies, we investigated the genomic variability of 41 K. lactis isolates and found that the overall genetic diversity of this species is very high (θw = 3.3 × 10-2) compared with other species such as Saccharomyces cerevisiae (θw = 1.6 × 10-2). However, the domesticated dairy population shows a reduced level of diversity (θw = 1 × 10-3), probably due to a domestication bottleneck. In addition, this entire population is characterized by the introgression of the LAC4 and LAC12 genes, responsible for lactose fermentation and coming from the closely related species, Kluyveromyces marxianus, as previously described. Our results highlighted that the LAC4/LAC12 gene cluster was acquired through multiple and independent introgression events. Finally, we also identified several genes that could play a role in adaptation to dairy environments through copy number variation. These genes are involved in sugar consumption, flocculation, and drug resistance, and may play a role in dairy processes. Overall, our study illustrates contrasting genomic evolution and sheds new light on the impact of domestication processes on it.


Subject(s)
DNA Copy Number Variations , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Genomics , Evolution, Molecular
15.
PLoS Genet ; 19(1): e1010592, 2023 01.
Article in English | MEDLINE | ID: mdl-36608114

ABSTRACT

Meiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. In this context, after investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii. Attempts to generate diploid strains with fully hybrid genomes invariably resulted in strains with frequent whole-chromosome aneuploidy and multiple extended regions of loss of heterozygosity (LOH), which mechanistic origin is so far unclear. Despite the lack of multiple ZMM pro-crossover factors in L. waltii, numbers of crossovers and noncrossovers per meiosis were higher than in L. kluyveri but lower than in S. cerevisiae, for comparable genome sizes. Similar to L. kluyveri but opposite to S. cerevisiae, L. waltii exhibits an elevated frequency of zero-crossover bivalents. Lengths of gene conversion tracts for both crossovers and non-crossovers in L. waltii were comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tract size in S. cerevisiae. L. waltii recombination hotspots were not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, L. waltii crossover interference was reduced relative to S. cerevisiae, with interference being detected only in the 25 kb distance range. Detection of positive inference only at short distance scales in the absence of multiple ZMM factors required for interference-sensitive crossovers in other systems likely reflects interference between early recombination precursors such as DSBs.


Subject(s)
Meiosis , Crossing Over, Genetic , DNA-Binding Proteins/genetics , Meiosis/genetics , Microtubule-Associated Proteins/genetics , MutL Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , Ubiquitin-Protein Ligases/genetics
16.
Mol Ecol ; 32(10): 2374-2395, 2023 05.
Article in English | MEDLINE | ID: mdl-35318747

ABSTRACT

Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g., winemaking, bioethanol production) or as a beneficial microorganism (e.g., production of specific beers, kombucha). In addition to its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the coexistence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g., nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.


Subject(s)
Brettanomyces , Wine , Humans , Saccharomyces cerevisiae , Wine/analysis , Brettanomyces/genetics , Brettanomyces/metabolism , Genomics , Fermentation
17.
Mol Biol Evol ; 39(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36205042

ABSTRACT

The appearance of genomic variations such as loss of heterozygosity (LOH) has a significant impact on phenotypic diversity observed in a population. Recent large-scale yeast population genomic surveys have shown a high frequency of these events in natural isolates and more particularly in polyploids. However, the frequency, extent, and spectrum of LOH in polyploid organisms have never been explored and are poorly characterized to date. Here, we accumulated 5,163 LOH events over 1,875 generations in 76 mutation accumulation (MA) lines comprising nine natural heterozygous diploid, triploid, and tetraploid natural S. cerevisiae isolates from different ecological and geographical origins. We found that the rate and spectrum of LOH are variable across ploidy levels. Of the total accumulated LOH events, 8.5%, 21%, and 70.5% of them were found in diploid, triploid, and tetraploid MA lines, respectively. Our results clearly show that the frequency of generated LOH events increases with ploidy level. In fact, the cumulative LOH rates were estimated to be 9.3 × 10-3, 2.2 × 10-2, and 8.4 × 10-2 events per division for diploids, triploids, and tetraploids, respectively. In addition, a clear bias toward the accumulation of interstitial and short LOH tracts is observed in triploids and tetraploids compared with diploids. The variation of the frequency and spectrum of LOH events across ploidy level could be related to the genomic instability, characterizing higher ploidy isolates.


Subject(s)
Saccharomyces cerevisiae , Tetraploidy , Saccharomyces cerevisiae/genetics , Triploidy , Ploidies , Loss of Heterozygosity
18.
Proc Natl Acad Sci U S A ; 119(37): e2204206119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067306

ABSTRACT

In natural populations, the same mutation can lead to different phenotypic outcomes due to the genetic variation that exists among individuals. Such genetic background effects are commonly observed, including in the context of many human diseases. However, systematic characterization of these effects at the species level is still lacking to date. Here, we sought to comprehensively survey background-dependent traits associated with gene loss-of-function (LoF) mutations in 39 natural isolates of Saccharomyces cerevisiae using a transposon saturation strategy. By analyzing the modeled fitness variability of a total of 4,469 genes, we found that 15% of them, when impacted by a LoF mutation, exhibited a significant gain- or loss-of-fitness phenotype in certain natural isolates compared with the reference strain S288C. Out of these 632 genes with predicted background-dependent fitness effects, around 2/3 impact multiple backgrounds with a gradient of predicted fitness change while 1/3 are specific to a single genetic background. Genes related to mitochondrial function are significantly overrepresented in the set of genes showing a continuous variation and display a potential functional rewiring with other genes involved in transcription and chromatin remodeling as well as in nuclear-cytoplasmic transport. Such rewiring effects are likely modulated by both the genetic background and the environment. While background-specific cases are rare and span diverse cellular processes, they can be functionally related at the individual level. All genes with background-dependent fitness effects tend to have an intermediate connectivity in the global genetic interaction network and have shown relaxed selection pressure at the population level, highlighting their potential evolutionary characteristics.


Subject(s)
Genetic Fitness , Loss of Function Mutation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Disease/genetics , Gene Regulatory Networks , Humans , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200514, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35634920

ABSTRACT

With the advent of high throughput sequencing technologies, genome-wide association studies (GWAS) have become a powerful paradigm for dissecting the genetic origins of the observed phenotypic variation. We recently completely sequenced the genome of 1011 Saccharomyces cerevisiae isolates, laying a strong foundation for GWAS. To assess the feasibility and the limits of this approach, we performed extensive simulations using five selected subpopulations as well as the total set of 1011 genomes. We measured the ability to detect the causal genetic variants involved in Mendelian and more complex traits using a linear mixed model approach. The results showed that population structure is well accounted for and is not the main problem when the sample size is high enough. While the genetic determinant of a Mendelian trait is easily mapped in all studied subpopulations, discrepancies are seen between datasets when performing GWAS on a complex trait in terms of detection, false positive and false negative rate. Finally, we performed GWAS on the different defined subpopulations using a real quantitative trait (resistance to copper sulfate) and showed the feasibility of this approach. The performance of each dataset depends simultaneously on several factors such as sample size, relatedness and population evolutionary history. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Subject(s)
Genome-Wide Association Study , Saccharomyces cerevisiae , Chromosome Mapping/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Saccharomyces cerevisiae/genetics
20.
Methods Mol Biol ; 2477: 313-330, 2022.
Article in English | MEDLINE | ID: mdl-35524125

ABSTRACT

After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.


Subject(s)
Argonaute Proteins , Candida glabrata , RNA Interference , Argonaute Proteins/genetics , Candida glabrata/genetics , RNA, Double-Stranded
SELECTION OF CITATIONS
SEARCH DETAIL
...