Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
N Engl J Med ; 389(18): 1709-1716, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37913509
2.
Histopathology ; 83(4): 569-581, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37679051

ABSTRACT

AIMS: Although TSC1 or TSC2 inactivating mutations that lead to mTORC1 hyperactivation have been reported in hepatic angiomyolipomas (hAML), the role of other somatic genetic events that may contribute to hAML development is unknown. There are also limited data regarding the tumour microenvironment (TME) of hAML. The aim of the present study was to identify other somatic events in genomic level and changes in TME that contribute to tumorigenesis in hAML. METHODS AND RESULTS: In this study, we performed exome sequencing in nine sporadic hAML tumours and deep-coverage targeted sequencing for TSC2 in three additional hAML. Immunohistochemistry and multiplex immunofluorescence were carried out for 15 proteins to characterise the tumour microenvironment and assess immune cell infiltration. Inactivating somatic variants in TSC2 were identified in 10 of 12 (83%) cases, with a median allele frequency of 13.6%. Five to 18 somatic variants (median number: nine, median allele frequency 21%) not in TSC1 or TSC2 were also identified, mostly of uncertain clinical significance. Copy number changes were rare, but detection was impaired by low tumour purity. Immunohistochemistry demonstrated numerous CD68+ macrophages of distinct appearance from Küpffer cells. Multiplex immunofluorescence revealed low numbers of exhausted PD-1+/PD-L1+, FOXP3+ and CD8+ T cells. CONCLUSION: hAML tumours have consistent inactivating mutations in TSC2 and have a low somatic mutation rate, similar to other TSC-associated tumours. Careful histological review, standard IHC and multiplex immunofluorescence demonstrated marked infiltration by non-neoplastic inflammatory cells, mostly macrophages.


Subject(s)
Angiomyolipoma , Gastrointestinal Neoplasms , Liver Neoplasms , Tuberous Sclerosis Complex 2 Protein , Humans , Angiomyolipoma/genetics , Liver Neoplasms/genetics , Macrophages , Mutation , Tumor Microenvironment , Tuberous Sclerosis Complex 2 Protein/genetics
3.
Mod Pathol ; 36(9): 100237, 2023 09.
Article in English | MEDLINE | ID: mdl-37295554

ABSTRACT

Primary pericardial mesotheliomas are extremely rare, accounting for <1% of all mesotheliomas, and their molecular genetic features and predisposing factors remain to be determined. Here, we report the clinicopathologic, immunohistochemical, and molecular genetic findings of 3 pericardial mesotheliomas without pleural involvement. Three cases diagnosed between 2004 and 2022 were included in the study and analyzed by immunohistochemistry and targeted next-generation sequencing (NGS); corresponding nonneoplastic tissue was sequenced in all cases. Two patients were female and 1 was male, aged between 66 and 75 years. Two patients each had prior asbestos exposure and were smokers. Histologic subtypes were epithelioid in 2 cases and biphasic in 1 case. Immunohistochemical staining identified expression of cytokeratin AE1/AE3 and calretinin in all cases, D2-40 in 2 cases, and WT1 in 1 case. Staining for tumor suppressors revealed loss of p16, MTAP, and Merlin (NF2) expression in 2 cases and loss of BAP1 and p53 in 1 case. Abnormal cytoplasmic BAP1 expression was observed in an additional case. Protein expression abnormalities correlated with NGS results, which showed concurrent complete genomic inactivation of CDKN2A/p16, CDKN2B, MTAP, and NF2 in 2 mesotheliomas and of BAP1 and TP53 in 1 mesothelioma each, respectively. In addition, 1 patient harbored a pathogenic BRCA1 germline mutation, which resulted in biallelic inactivation in the mesothelioma. All mesotheliomas were mismatch repair proficient and showed several chromosomal gains and losses. All patients died from disease. Our study demonstrates that pericardial mesotheliomas share common morphologic, immunohistochemical, and molecular genetic features with pleural mesothelioma, including recurrent genomic inactivation of canonical tumor suppressors. Our study adds new insights into the genetic landscape of primary pericardial mesothelioma and highlights BRCA1 loss as a potential contributing factor in a subset of cases, thereby contributing to refined precision diagnostics for this rare cancer.


Subject(s)
Heart Neoplasms , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Thymus Neoplasms , Humans , Male , Female , Aged , Lung Neoplasms/pathology , Neoplasm Recurrence, Local , Mesothelioma/diagnosis , Pleural Neoplasms/pathology , Heart Neoplasms/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
5.
Cancer Treat Rev ; 112: 102491, 2023 01.
Article in English | MEDLINE | ID: mdl-36502615

ABSTRACT

Tenosynovial giant cell tumour (TGCT) is a rare, locally aggressive, mesenchymal tumor arising from the joints, bursa and tendon sheaths. TGCT comprises a nodular- and a diffuse-type, with the former exhibiting mostly indolent course and the latter a locally aggressive behavior. Although usually not life-threatening, TGCT may cause chronic pain and adversely impact function and quality of life (QoL). CSFR1 inhibitors are effective with benefit on symptoms and QoL but are not available in most countries. The degree of uncertainty in selecting the most appropriate therapy and the lack of guidelines on the clinical management of TGCT make the adoption of new treatments inconsistent across the world, with suboptimal outcomes for patients. A global consensus meeting was organized in June 2022, involving experts from several disciplines and patient representatives from SPAGN to define the best evidence-based practice for the optimal approach to TGCT and generate the recommendations presented herein.


Subject(s)
Giant Cell Tumor of Tendon Sheath , Quality of Life , Humans , Consensus , Giant Cell Tumor of Tendon Sheath/drug therapy , Giant Cell Tumor of Tendon Sheath/pathology
6.
Br J Cancer ; 127(11): 2072-2085, 2022 11.
Article in English | MEDLINE | ID: mdl-36175617

ABSTRACT

BACKGROUND: Advanced gastrointestinal stromal tumour (GIST) is characterised by genomic perturbations of key cell cycle regulators. Oncogenic activation of CDK4/6 results in RB1 inactivation and cell cycle progression. Given that single-agent CDK4/6 inhibitor therapy failed to show clinical activity in advanced GIST, we evaluated strategies for maximising response to therapeutic CDK4/6 inhibition. METHODS: Targeted next-generation sequencing and multiplexed protein imaging were used to detect cell cycle regulator aberrations in GIST clinical samples. The impact of inhibitors of CDK2, CDK4 and CDK2/4/6 was determined through cell proliferation and protein detection assays. CDK-inhibitor resistance mechanisms were characterised in GIST cell lines after long-term exposure. RESULTS: We identify recurrent genomic aberrations in cell cycle regulators causing co-activation of the CDK2 and CDK4/6 pathways in clinical GIST samples. Therapeutic co-targeting of CDK2 and CDK4/6 is synergistic in GIST cell lines with intact RB1, through inhibition of RB1 hyperphosphorylation and cell proliferation. Moreover, RB1 inactivation and a novel oncogenic cyclin D1 resulting from an intragenic rearrangement (CCND1::chr11.g:70025223) are mechanisms of acquired CDK-inhibitor resistance in GIST. CONCLUSIONS: These studies establish the biological rationale for CDK2 and CDK4/6 co-inhibition as a therapeutic strategy in patients with advanced GIST, including metastatic GIST progressing on tyrosine kinase inhibitors.


Subject(s)
Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Humans , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Cyclin-Dependent Kinase 6 , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics
7.
Cancer Treat Rev ; 110: 102455, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36031697

ABSTRACT

BACKGROUND: In ultra-rare sarcomas (URS) the conduction of prospective, randomized trials is challenging. Data from retrospective observational studies (ROS) may represent the best evidence available. ROS implicit limitations led to poor acceptance by the scientific community and regulatory authorities. In this context, an expert panel from the Connective Tissue Oncology Society (CTOS), agreed on the need to establish a set of minimum requirements for conducting high-quality ROS on the activity of systemic therapies in URS. METHODS: Representatives from > 25 worldwide sarcoma reference centres met in November 2020 and identified a list of topics summarizing the main issues encountered in ROS on URS. An online survey on these topics was distributed to the panel; results were summarized by descriptive statistics and discussed during a second meeting (November 2021). RESULTS: Topics identified by the panel included the use of ROS results as external control data, the criteria for contributing centers selection, modalities for ensuring a correct pathological diagnosis and radiologic assessment, consistency of surveillance policies across centers, study end-points, risk of data duplication, results publication. Based on the answers to the survey (55 of 62 invited experts) and discussion the panel agreed on 18 statements summarizing principles of recommended practice. CONCLUSIONS: These recommendations will be disseminated by CTOS across the sarcoma community and incorporated in future ROS on URS, to maximize their quality and favor their use as control data when results from prospective studies are unavailable. These recommendations could help the optimal conduction of ROS also in other rare tumors.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Connective Tissue/pathology , Consensus , Humans , Observational Studies as Topic , Prospective Studies , Reactive Oxygen Species , Retrospective Studies , Sarcoma/drug therapy , Sarcoma/pathology , Soft Tissue Neoplasms/therapy
8.
Blood ; 140(10): 1094-1103, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35714308

ABSTRACT

Gout is a common inflammatory arthritis caused by precipitation of monosodium urate (MSU) crystals in individuals with hyperuricemia. Acute flares are accompanied by secretion of proinflammatory cytokines, including interleukin-1ß (IL-1ß). Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition predisposing to hematologic cancers and cardiovascular disease. CHIP is associated with elevated IL-1ß, thus we investigated CHIP as a risk factor for gout. To test the clinical association between CHIP and gout, we analyzed whole exome sequencing data from 177 824 individuals in the MGB Biobank (MGBB) and UK Biobank (UKB). In both cohorts, the frequency of gout was higher among individuals with CHIP than without CHIP (MGBB, CHIP with variant allele fraction [VAF] ≥2%: odds ratio [OR], 1.69; 95% CI, 1.09-2.61; P = .0189; UKB, CHIP with VAF ≥10%: OR, 1.25; 95% CI, 1.05-1.50; P = .0133). Moreover, individuals with CHIP and a VAF ≥10% had an increased risk of incident gout (UKB: hazard ratio [HR], 1.28; 95% CI, 1.06-1.55; P = .0107). In murine models of gout pathogenesis, animals with Tet2 knockout hematopoietic cells had exaggerated IL-1ß secretion and paw edema upon administration of MSU crystals. Tet2 knockout macrophages elaborated higher levels of IL-1ß in response to MSU crystals in vitro, which was ameliorated through genetic and pharmacologic Nlrp3 inflammasome inhibition. These studies show that TET2-mutant CHIP is associated with an increased risk of gout in humans and that MSU crystals lead to elevated IL-1ß levels in Tet2 knockout murine models. We identify CHIP as an amplifier of NLRP3-dependent inflammatory responses to MSU crystals in patients with gout.


Subject(s)
Dioxygenases , Gout , Animals , Clonal Hematopoiesis , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Gout/genetics , Humans , Inflammasomes/genetics , Interleukin-1beta/genetics , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Uric Acid/chemistry , Uric Acid/pharmacology
10.
Am Soc Clin Oncol Educ Book ; 42: 1-15, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35522913

ABSTRACT

Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin and a compelling clinical and biologic model for the rational development of molecularly targeted agents. This is because the majority of GISTs are driven by gain-of-function mutations in KIT or PDGFRA receptor tyrosine kinases. Specific GIST mutations circumscribe well-defined molecular subgroups that must be determined during the diagnostic work-up to guide clinical management, including therapeutic decisions. Surgery is the cornerstone treatment in localized disease and can also be clinically relevant in the metastatic setting. The correct combination and sequence of targeted agents and surgical procedures improves outcomes for patients with GIST and should be discussed individually within multidisciplinary expert teams. All currently approved agents for the treatment of GIST are based on orally available tyrosine kinase inhibitors targeting KIT and PDGFRA oncogenic activation. Although first-line imatinib achieves remarkable prolonged disease control, the benefit of subsequent lines of treatment is more modest. Novel therapeutic strategies focus on overcoming the heterogeneity of KIT or PDGFRA secondary mutations and providing more potent inhibition of specific challenging mutations. This article reviews the current understanding and treatment of GIST, with an emphasis on recent advances.


Subject(s)
Antineoplastic Agents , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Humans , Imatinib Mesylate/therapeutic use , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/therapeutic use
13.
Cancer ; 127(16): 2934-2942, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33910263

ABSTRACT

BACKGROUND: Among sarcomas, which are rare cancers, many types are exceedingly rare; however, a definition of ultra-rare cancers has not been established. The problem of ultra-rare sarcomas is particularly relevant because they represent unique diseases, and their rarity poses major challenges for diagnosis, understanding disease biology, generating clinical evidence to support new drug development, and achieving formal authorization for novel therapies. METHODS: The Connective Tissue Oncology Society promoted a consensus effort in November 2019 to establish how to define ultra-rare sarcomas through expert consensus and epidemiologic data and to work out a comprehensive list of these diseases. The list of ultra-rare sarcomas was based on the 2020 World Health Organization classification, The incidence rates were estimated using the Information Network on Rare Cancers (RARECARENet) database and NETSARC (the French Sarcoma Network's clinical-pathologic registry). Incidence rates were further validated in collaboration with the Asian cancer registries of Japan, Korea, and Taiwan. RESULTS: It was agreed that the best criterion for a definition of ultra-rare sarcomas would be incidence. Ultra-rare sarcomas were defined as those with an incidence of approximately ≤1 per 1,000,000, to include those entities whose rarity renders them extremely difficult to conduct well powered, prospective clinical studies. On the basis of this threshold, a list of ultra-rare sarcomas was defined, which comprised 56 soft tissue sarcoma types and 21 bone sarcoma types. CONCLUSIONS: Altogether, the incidence of ultra-rare sarcomas accounts for roughly 20% of all soft tissue and bone sarcomas. This confirms that the challenges inherent in ultra-rare sarcomas affect large numbers of patients.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Connective Tissue/pathology , Consensus , Humans , Incidence , Prospective Studies , Sarcoma/diagnosis , Sarcoma/epidemiology , Sarcoma/therapy , Soft Tissue Neoplasms/epidemiology
14.
Cancer ; 127(15): 2666-2673, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33788262

ABSTRACT

BACKGROUND: Leiomyosarcoma (LMS) is the most common soft tissue and uterine sarcoma, but no standard therapy is available for recurrent or metastatic LMS. TP53, p16/RB1, and PI3K/mTOR pathway dysregulations are recurrent events, and some LMS express estrogen receptor (ER) and/or progesterone receptor (PR). To characterize relationships between these pathway perturbations, the authors evaluated protein expression in soft tissue and uterine nonprimary leiomyosarcoma (np-LMS), including local recurrences and distant metastases. METHODS: TP53, RB1, p16, and PTEN expression aberrations were determined by immunohistochemistry (IHC) in tissue microarrays (TMAs) from 227 np-LMS and a comparison group of 262 primary leiomyosarcomas (p-LMS). Thirty-five of the np-LMS had a matched p-LMS specimen in the TMAs. Correlative studies included differentiation scoring, ER and PR IHC, and CDKN2A/p16 fluorescence in situ hybridization. RESULTS: Dysregulation of TP53, p16/RB1, and PTEN was demonstrated in 90%, 95%, and 41% of np-LMS, respectively. PTEN inactivation was more common in soft tissue np-LMS than uterine np-LMS (55% vs 31%; P = .0005). Moderate-strong ER expression was more common in uterine np-LMS than soft tissue np-LMS (50% vs 7%; P < .0001). Co-inactivation of TP53 and RB1 was found in 81% of np-LMS and was common in both soft tissue and uterine np-LMS (90% and 74%, respectively). RB1, p16, and PTEN aberrations were nearly always conserved in p-LMS and np-LMS from the same patients. CONCLUSIONS: These studies show that nearly all np-LMS have TP53 and/or RB1 aberrations. Therefore, therapies targeting cell cycle and DNA damage checkpoint vulnerabilities should be prioritized for evaluations in LMS.


Subject(s)
Genes, p53 , Leiomyosarcoma , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Uterine Neoplasms , Female , Genes, p16 , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , PTEN Phosphohydrolase/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
15.
Am J Clin Pathol ; 156(2): 229-245, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33608696

ABSTRACT

OBJECTIVES: The SWI/SNF complex core subunit SMARCB1 is inactivated in a variety of neoplasms that share characteristic "rhabdoid" cytomorphology. The aim of this study was to evaluate SMARCB1-deficient soft tissue neoplasms on cytology to identify diagnostic clues. METHODS: Eleven SMARCB1-deficient tumors, including six epithelioid sarcomas, three malignant rhabdoid tumors, one epithelioid malignant peripheral nerve sheath tumor (MPNST), and one poorly differentiated chordoma with fine-needle aspiration (FNA), serous effusion, or touch prep (TP) from two institutions, were included. Targeted next-generation sequencing (NGS) was performed in two cases. RESULTS: Evaluation of FNA (n = 4), effusion (n = 4), and TP (n = 3) in nine adult and two pediatric patients demonstrated cellular samples (n = 11), epithelioid cells with rhabdoid morphology (n = 9), eccentrically located nuclei with prominent nucleoli (n = 7), and cytoplasmic bodies (n = 4); two patients were diagnosed on FNA with cell block. Immunohistochemistry (IHC) demonstrated SMARCB1 loss in all cases and keratin and/or EMA expression in all but the epithelioid MPNST; NGS identified SMARCB1 inactivation in both cases. CONCLUSIONS: SMARCB1-deficient soft tissue neoplasms comprise a variety of tumors with epithelioid morphology and frequent expression of keratin and/or EMA. Recognition of characteristic rhabdoid morphology on cytology can prompt IHC and/or NGS testing for SMARCB1 deficiency and help establish the diagnosis.


Subject(s)
SMARCB1 Protein/deficiency , Soft Tissue Neoplasms/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Male , Middle Aged , Molecular Biology , SMARCB1 Protein/genetics , Soft Tissue Neoplasms/genetics , Young Adult
16.
Semin Diagn Pathol ; 38(3): 222-231, 2021 May.
Article in English | MEDLINE | ID: mdl-32646614

ABSTRACT

The SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex is a large multi-subunit protein assembly that orchestrates chromatin compaction and accessibility for gene transcription in an ATP-dependent manner. As a key epigenetic regulator, the SWI/SNF complex coordinates gene expression, cell proliferation and differentiation, and its biologic functions, in part, antagonize the polycomb repressive complex 2. The mammalian SWI/SNF complex consists of 15 subunits encoded by 29 genes, some of which are recurrently mutated in human cancers, in the germline or sporadic setting. Most SWI/SNF-deficient tumors share common "rhabdoid" cytomorphology. SMARCB1 (INI1) is the subunit most frequently inactivated in soft tissue neoplasms. Specifically, SMARCB1 deficiency is observed as the genetic hallmark in virtually all malignant rhabdoid tumors, and most cases of epithelioid sarcoma and poorly differentiated chordoma. In addition, subsets of myoepithelial carcinoma (10-40%), extraskeletal myxoid chondrosarcoma (20%), epithelioid schwannoma (40%), and epithelioid malignant peripheral nerve sheath tumor (70%) demonstrate SMARCB1 loss. The gene encoding the SS18 subunit is involved in the SS18-SSX rearrangement, which is pathognomonic of synovial sarcoma and indirectly inactivates SMARCB1. Finally, undifferentiated SMARCA4-deficient thoracic sarcomas are defined by SMARCA4 subunit inactivation, leading to SMARCA4 and SMARCA2 loss. Rarely, inactivation of alternate but biologically equivalent key regulators can substitute for canonical subunit deficiency, such as SMARCA4 inactivation in cases of SMARCB1-retained epithelioid sarcoma. This review briefly highlights SWI/SNF complex biologic functions and its roles in human cancer and provides a detailed update on recent advances in soft tissue neoplasms with canonical SWI/SNF complex deficiency, correlating morphologic, genomic, and immunohistochemical findings.


Subject(s)
Rhabdoid Tumor , Soft Tissue Neoplasms , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , Humans , Immunohistochemistry , Nuclear Proteins , Soft Tissue Neoplasms/genetics , Sucrose , Transcription Factors/genetics
17.
Mod Pathol ; 33(11): 2295-2306, 2020 11.
Article in English | MEDLINE | ID: mdl-32601382

ABSTRACT

Chondroblastoma is currently classified as a benign neoplasm; however, chondroblastoma and chondroblastoma-like osteosarcoma have morphologic overlap, raising the possibility that some tumors diagnosed as chondroblastoma-like osteosarcoma might actually represent malignant chondroblastoma. The H3F3B K36M point mutation, which has not been reported in osteosarcoma, is identified in 95% of chondroblastomas and is reliably detectable by immunohistochemistry (IHC). We reviewed 11 tumors diagnosed as atypical chondroblastoma, malignant chondroblastoma, or chondroblastoma-like osteosarcoma (median follow-up: 8.8 years; range: 4 months-26.4 years). Seven chondroblastomas with cytologic atypia and permeative growth were designated "malignant chondroblastoma"; six were H3K36M-positive by IHC. Relative to conventional chondroblastoma, malignant chondroblastoma occurred in older individuals (median: 52 years; range: 29-57 years) and arose at unusual sites. Three of four tumors with long-term follow-up recurred, and one patient died of widespread metastases. One was found to have chromosomal copy number alter4ations and a SETD2 mutation in addition to H3F3B K36M. The four remaining tumors were classified as chondroblastoma-like osteosarcoma. Chondroblastoma-like osteosarcoma occurred in younger patients (median: 21 years; range: 19-40 years) than malignant chondroblastoma. In contrast to malignant chondroblastoma, all had regions of malignant cells forming bone. Two of three patients with long-term follow-up developed recurrences, and two died of disease, one with widespread metastases. No mutations in H3F3A/H3F3B were detected by Sanger sequencing. While malignant chondroblastoma and chondroblastoma-like osteosarcoma show significant morphologic overlap, they have distinct clinical presentations and genetic findings. When considering this challenging differential diagnosis, IHC using histone H3 mutation-specific antibodies is a critical diagnostic adjunct.


Subject(s)
Bone Neoplasms/pathology , Chondroblastoma/pathology , Neoplasm Recurrence, Local/pathology , Adult , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Chondroblastoma/genetics , Chondroblastoma/metabolism , Female , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local/metabolism
18.
Mod Pathol ; 33(11): 2104-2114, 2020 11.
Article in English | MEDLINE | ID: mdl-32561849

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has led to a global public health crisis. In elderly individuals and those with comorbidities, COVID-19 is associated with high mortality, frequently caused by acute respiratory distress syndrome. We examine in situ expression of SARS-CoV-2 in airways and lung obtained at autopsy of individuals with confirmed COVID-19 infection. Seven autopsy cases (male, N = 5; female, N = 2) with reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection and a median age of 66 years (range, 50-77 years) were evaluated using a rabbit polyclonal antibody against SARS Nucleocapsid protein in correlation with clinical parameters. The median time from symptom onset to death was 9 days (range, 6-31 days), from hospitalization 7 days (range, 1-21 days), from positive RT-PCR 7 days (range, 0-18 days), and from intensive care unit admission defining onset of respiratory failure 3 days (range, 1-18 days). Chest imaging identified diffuse airspace disease in all patients corresponding to acute and (N = 5) or organizing (N = 2) diffuse alveolar damage (DAD) on histologic examination. Among five patients with acute-phase DAD (≤7 days from onset of respiratory failure), SARS-CoV-2 was detected in pulmonary pneumocytes and ciliated airway cells (N = 5), and in upper airway epithelium (N = 2). In two patients with organizing DAD (>14 days from onset of respiratory failure), no virus was detected in lungs or airways. No endothelial cell infection was observed. The findings suggest that SARS-CoV-2 infection of epithelial cells in lungs and airways of patients with COVID-19 who developed respiratory failure can be detected during the acute phase of lung injury and is absent in the organizing phase.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/pathology , Coronavirus Infections/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Aged , Autopsy , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , Respiratory System/pathology , Respiratory System/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
19.
Am Soc Clin Oncol Educ Book ; 40: 445-462, 2020 May.
Article in English | MEDLINE | ID: mdl-32421448

ABSTRACT

Sarcomas are rare tumors but comprise a wide histologic spectrum. Advances in technology have emerged to address the biologic complexity and challenging diagnosis and treatment of this disease. The diagnostic approach to sarcomas has historically been based on morphologic features, but technologic advances in immunohistochemistry and cytogenetic/molecular testing have transformed the interdisciplinary work-up of mesenchymal neoplasms in recent years. On the therapeutic side, technologic advances in the delivery of radiation have made it a linchpin in the treatment of localized and oligometastatic sarcoma. In this review, we discuss recent advances in the pathologic diagnosis of sarcomas and discuss select sarcoma types that illustrate how newly discovered diagnostic, prognostic, and predictive biomarkers have refined existing classification schemes and substantially shaped our diagnostic approach. Such examples include conventional and epithelioid malignant peripheral nerve sheath tumors (MPNSTs), emerging entities in the group of round cell sarcomas, and other mesenchymal neoplasms with distinct cytogenetic aberrations. Recent advances in radiation oncology, including intensity-modulated, stereotactic, MRI-guided, and proton radiotherapy (RT), will be reviewed in the context of neoadjuvant or adjuvant localized soft-tissue sarcoma and oligometastatic or oligoprogressive disease. Innovations in translational research are expected to be introduced into clinical practice over the next few years and will likely continue to affect the rapidly evolving field of sarcoma diagnostics and therapy.


Subject(s)
Sarcoma/therapy , Soft Tissue Neoplasms/therapy , Humans , Sarcoma/diagnosis , Soft Tissue Neoplasms/diagnosis , Technology
20.
Am J Surg Pathol ; 44(4): 553-560, 2020 04.
Article in English | MEDLINE | ID: mdl-31725470

ABSTRACT

Keratocystic odontogenic tumors (KCOTs) are locally aggressive odontogenic neoplasms with recurrence rates of up to 60%. Approximately 5% of KCOTs are associated with nevoid basal cell carcinoma (Gorlin) syndrome and 90% of these show genomic inactivation of the PTCH1 gene encoding Patched 1. Sporadic KCOTs reportedly have PTCH1 mutations in 30% of cases, but previous genomic analyses have been limited by low tumor DNA yield. The aim of this study was to identify recurrent genomic aberrations in sporadic KCOTs using a next-generation sequencing panel with complete exonic coverage of sonic hedgehog (SHH) pathway members PTCH1, SMO, SUFU, GLI1, and GLI2. Included were 44 sporadic KCOTs from 23 female and 21 male patients with a median age of 50 years (range, 10 to 82 y) and located in the mandible (N=33) or maxilla (N=11). Sequencing identified PTCH1 inactivating mutations in 41/44 (93%) cases, with biallelic inactivation in 35 (80%) cases; 9q copy neutral loss of heterozygosity targeting the PTCH1 locus was identified in 15 (34%) cases. No genomic aberrations were identified in other sequenced SHH pathway members. In summary, we demonstrate PTCH1 inactivating mutations in 93% of sporadic KCOTs, indicating that SHH pathway alterations are a near-universal event in these benign but locally aggressive neoplasms. The high frequency of complete PTCH1 loss of function may provide a rational target for SHH pathway inhibitors to be explored in future studies.


Subject(s)
Biomarkers, Tumor/genetics , Gene Silencing , Mandibular Neoplasms/genetics , Maxillary Neoplasms/genetics , Mutation , Odontogenic Cysts/genetics , Odontogenic Tumors/genetics , Patched-1 Receptor/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Mandibular Neoplasms/pathology , Maxillary Neoplasms/pathology , Middle Aged , Odontogenic Cysts/pathology , Odontogenic Tumors/pathology , Phenotype , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...