Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
AJR Am J Roentgenol ; 223(1): e2431609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38899843

ABSTRACT

In this episode of the AJR Podcast Series on Training and Education, Pamela Schaefer, MD, joins host Monica Cheng, MD, to discuss incorporating education into radiology careers. Dr. Schaefer shares her journey, the role of leadership, and advice for aspiring educators.


In this episode of the AJR Podcast Series on Training and Education, Pamela Schaefer, MD, joins host Monica Cheng, MD, to discuss incorporating education into radiology careers. Dr. Schaefer shares her journey, the role of leadership, and advice for aspiring educators.


Subject(s)
Leadership , Radiology , Radiology/education , Humans , Webcasts as Topic , Periodicals as Topic
2.
Ann Neurol ; 96(2): 321-331, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38738750

ABSTRACT

OBJECTIVE: For stroke patients with unknown time of onset, mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) can guide thrombolytic intervention. However, access to MRI for hyperacute stroke is limited. Here, we sought to evaluate whether a portable, low-field (LF)-MRI scanner can identify DWI-FLAIR mismatch in acute ischemic stroke. METHODS: Eligible patients with a diagnosis of acute ischemic stroke underwent LF-MRI acquisition on a 0.064-T scanner within 24 h of last known well. Qualitative and quantitative metrics were evaluated. Two trained assessors determined the visibility of stroke lesions on LF-FLAIR. An image coregistration pipeline was developed, and the LF-FLAIR signal intensity ratio (SIR) was derived. RESULTS: The study included 71 patients aged 71 ± 14 years and a National Institutes of Health Stroke Scale of 6 (interquartile range 3-14). The interobserver agreement for identifying visible FLAIR hyperintensities was high (κ = 0.85, 95% CI 0.70-0.99). Visual DWI-FLAIR mismatch had a 60% sensitivity and 82% specificity for stroke patients <4.5 h, with a negative predictive value of 93%. LF-FLAIR SIR had a mean value of 1.18 ± 0.18 <4.5 h, 1.24 ± 0.39 4.5-6 h, and 1.40 ± 0.23 >6 h of stroke onset. The optimal cut-point for LF-FLAIR SIR was 1.15, with 85% sensitivity and 70% specificity. A cut-point of 6.6 h was established for a FLAIR SIR <1.15, with an 89% sensitivity and 62% specificity. INTERPRETATION: A 0.064-T portable LF-MRI can identify DWI-FLAIR mismatch among patients with acute ischemic stroke. Future research is needed to prospectively validate thresholds and evaluate a role of LF-MRI in guiding thrombolysis among stroke patients with uncertain time of onset. ANN NEUROL 2024;96:321-331.


Subject(s)
Diffusion Magnetic Resonance Imaging , Ischemic Stroke , Humans , Aged , Male , Diffusion Magnetic Resonance Imaging/methods , Female , Middle Aged , Aged, 80 and over , Ischemic Stroke/diagnostic imaging , Stroke/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
Neuroimaging Clin N Am ; 34(2): 271-280, 2024 May.
Article in English | MEDLINE | ID: mdl-38604711

ABSTRACT

Acute stroke imaging plays a vital and time-sensitive role in therapeutic decision-making. Current clinical workflows widely use computed tomography (CT) and magnetic resonance (MR) techniques including CT and MR perfusion to estimate the volume of ischemic penumbra at risk for infarction without acute intervention. The use of imaging techniques aimed toward evaluating the metabolic derangements underlying a developing infarct may provide additional information for differentiating the penumbra from benign oligemia and infarct core. The authors review several modalities of metabolic imaging including PET, hydrogen and oxygen spectroscopy, sodium MRI, and pH-weighted MRI.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Brain Ischemia/pathology , Oxygen , Stroke/therapy , Magnetic Resonance Imaging , Spectrum Analysis , Positron-Emission Tomography/methods , Infarction , Hydrogen-Ion Concentration
5.
AJNR Am J Neuroradiol ; 45(4): 379-385, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38453413

ABSTRACT

BACKGROUND AND PURPOSE: The use of MR imaging in emergency settings has been limited by availability, long scan times, and sensitivity to motion. This study assessed the diagnostic performance of an ultrafast brain MR imaging protocol for evaluation of acute intracranial pathology in the emergency department and inpatient settings. MATERIALS AND METHODS: Sixty-six adult patients who underwent brain MR imaging in the emergency department and inpatient settings were included in the study. All patients underwent both the reference and the ultrafast brain MR protocols. Both brain MR imaging protocols consisted of T1-weighted, T2/T2*-weighted, FLAIR, and DWI sequences. The ultrafast MR images were reconstructed by using a machine-learning assisted framework. All images were reviewed by 2 blinded neuroradiologists. RESULTS: The average acquisition time was 2.1 minutes for the ultrafast brain MR protocol and 10 minutes for the reference brain MR protocol. There was 98.5% agreement on the main clinical diagnosis between the 2 protocols. In head-to-head comparison, the reference protocol was preferred in terms of image noise and geometric distortion (P < .05 for both). The ultrafast ms-EPI protocol was preferred over the reference protocol in terms of reduced motion artifacts (P < .01). Overall diagnostic quality was not significantly different between the 2 protocols (P > .05). CONCLUSIONS: The ultrafast brain MR imaging protocol provides high accuracy for evaluating acute pathology while only requiring a fraction of the scan time. Although there was greater image noise and geometric distortion on the ultrafast brain MR protocol images, there was significant reduction in motion artifacts with similar overall diagnostic quality between the 2 protocols.


Subject(s)
Brain Diseases , Inpatients , Adult , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/pathology , Time
6.
Neuroradiol J ; 37(3): 323-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38195418

ABSTRACT

BACKGROUND AND PURPOSE: Deep learning (DL) accelerated MR techniques have emerged as a promising approach to accelerate routine MR exams. While prior studies explored DL acceleration for specific lumbar MRI sequences, a gap remains in comprehending the impact of a fully DL-based MRI protocol on scan time and diagnostic quality for routine lumbar spine MRI. To address this, we assessed the image quality and diagnostic performance of a DL-accelerated lumbar spine MRI protocol in comparison to a conventional protocol. METHODS: We prospectively evaluated 36 consecutive outpatients undergoing non-contrast enhanced lumbar spine MRIs. Both protocols included sagittal T1, T2, STIR, and axial T2-weighted images. Two blinded neuroradiologists independently reviewed images for foraminal stenosis, spinal canal stenosis, nerve root compression, and facet arthropathy. Grading comparison employed the Wilcoxon signed rank test. For the head-to-head comparison, a 5-point Likert scale to assess image quality, considering artifacts, signal-to-noise ratio (SNR), anatomical structure visualization, and overall diagnostic quality. We applied a 15% noninferiority margin to determine whether the DL-accelerated protocol was noninferior. RESULTS: No significant differences existed between protocols when evaluating foraminal and spinal canal stenosis, nerve compression, or facet arthropathy (all p > .05). The DL-spine protocol was noninferior for overall diagnostic quality and visualization of the cord, CSF, intervertebral disc, and nerve roots. However, it exhibited reduced SNR and increased artifact perception. Interobserver reproducibility ranged from moderate to substantial (κ = 0.50-0.76). CONCLUSION: Our study indicates that DL reconstruction in spine imaging effectively reduces acquisition times while maintaining comparable diagnostic quality to conventional MRI.


Subject(s)
Deep Learning , Lumbar Vertebrae , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Lumbar Vertebrae/diagnostic imaging , Female , Prospective Studies , Middle Aged , Aged , Signal-To-Noise Ratio , Spinal Stenosis/diagnostic imaging , Adult , Spinal Diseases/diagnostic imaging
8.
J Cereb Blood Flow Metab ; 44(1): 50-65, 2024 01.
Article in English | MEDLINE | ID: mdl-37728641

ABSTRACT

Early prediction of the recovery of consciousness in comatose cardiac arrest patients remains challenging. We prospectively studied task-relevant fMRI responses in 19 comatose cardiac arrest patients and five healthy controls to assess the fMRI's utility for neuroprognostication. Tasks involved instrumental music listening, forward and backward language listening, and motor imagery. Task-specific reference images were created from group-level fMRI responses from the healthy controls. Dice scores measured the overlap of individual subject-level fMRI responses with the reference images. Task-relevant responsiveness index (Rindex) was calculated as the maximum Dice score across the four tasks. Correlation analyses showed that increased Dice scores were significantly associated with arousal recovery (P < 0.05) and emergence from the minimally conscious state (EMCS) by one year (P < 0.001) for all tasks except motor imagery. Greater Rindex was significantly correlated with improved arousal recovery (P = 0.002) and consciousness (P = 0.001). For patients who survived to discharge (n = 6), the Rindex's sensitivity was 75% for predicting EMCS (n = 4). Task-based fMRI holds promise for detecting covert consciousness in comatose cardiac arrest patients, but further studies are needed to confirm these findings. Caution is necessary when interpreting the absence of task-relevant fMRI responses as a surrogate for inevitable poor neurological prognosis.


Subject(s)
Coma , Heart Arrest , Humans , Coma/diagnostic imaging , Coma/complications , Magnetic Resonance Imaging , Heart Arrest/complications , Heart Arrest/diagnostic imaging , Prognosis
9.
Nat Rev Bioeng ; 1(9): 617-630, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37705717

ABSTRACT

The advent of portable, low-field MRI (LF-MRI) heralds new opportunities in neuroimaging. Low power requirements and transportability have enabled scanning outside the controlled environment of a conventional MRI suite, enhancing access to neuroimaging for indications that are not well suited to existing technologies. Maximizing the information extracted from the reduced signal-to-noise ratio of LF-MRI is crucial to developing clinically useful diagnostic images. Progress in electromagnetic noise cancellation and machine learning reconstruction algorithms from sparse k-space data as well as new approaches to image enhancement have now enabled these advancements. Coupling technological innovation with bedside imaging creates new prospects in visualizing the healthy brain and detecting acute and chronic pathological changes. Ongoing development of hardware, improvements in pulse sequences and image reconstruction, and validation of clinical utility will continue to accelerate this field. As further innovation occurs, portable LF-MRI will facilitate the democratization of MRI and create new applications not previously feasible with conventional systems.

10.
J Am Coll Radiol ; 20(11): 1081-1083, 2023 11.
Article in English | MEDLINE | ID: mdl-37661045
11.
Eur Radiol Exp ; 7(1): 34, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37394534

ABSTRACT

Flow-related artifacts have been observed in highly accelerated T1-weighted contrast-enhanced wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid gradient-echo (MPRAGE) imaging and can lead to diagnostic uncertainty. We developed an optimized flow-mitigated Wave-CAIPI MPRAGE acquisition protocol to reduce these artifacts through testing in a custom-built flow phantom. In the phantom experiment, maximal flow artifact reduction was achieved with the combination of flow compensation gradients and radial reordered k-space acquisition and was included in the optimized sequence. Clinical evaluation of the optimized MPRAGE sequence was performed in 64 adult patients, who all underwent contrast-enhanced Wave-CAIPI MPRAGE imaging without flow-compensation and with optimized flow-compensation parameters. All images were evaluated for the presence of flow-related artifacts, signal-to-noise ratio (SNR), gray-white matter contrast, enhancing lesion contrast, and image sharpness on a 3-point Likert scale. In the 64 cases, the optimized flow mitigation protocol reduced flow-related artifacts in 89% and 94% of the cases for raters 1 and 2, respectively. SNR, gray-white matter contrast, enhancing lesion contrast, and image sharpness were rated as equivalent for standard and flow-mitigated Wave-CAIPI MPRAGE in all subjects. The optimized flow mitigation protocol successfully reduced the presence of flow-related artifacts in the majority of cases.Relevance statementAs accelerated MRI using novel encoding schemes become increasingly adopted in clinical practice, our work highlights the need to recognize and develop strategies to minimize the presence of unexpected artifacts and reduction in image quality as potential compromises to achieving short scan times.Key points• Flow-mitigation technique led to an 89-94% decrease in flow-related artifacts.• Image quality, signal-to-noise ratio, enhancing lesion conspicuity, and image sharpness were preserved with the flow mitigation technique.• Flow mitigation reduced diagnostic uncertainty in cases where flow-related artifacts mimicked enhancing lesions.


Subject(s)
Brain , Magnetic Resonance Imaging , Adult , Humans , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Phantoms, Imaging , Artifacts
12.
Radiol Clin North Am ; 61(3): 415-434, 2023 May.
Article in English | MEDLINE | ID: mdl-36931759

ABSTRACT

Ischemic strokes in young adults are increasing in incidence and have emerged as a public health issue. The radiological features are not only diagnostic in identifying ischemic infarctions but also provide important clues in the investigation of the underlying causes or in the identification of risk factors. According to the different imaging patterns associated with ischemic stroke in young adults, the causes can be classified into 5 categories: cardioembolism, large vessel vasculopathy, small vessel vasculopathy, toxic-metabolic, and hypercoagulable disorders. The radiological features of each category and cause are described and summarized in this review.


Subject(s)
Infarction , Stroke , Humans , Young Adult , Risk Factors , Infarction/complications , Stroke/diagnostic imaging , Stroke/etiology
13.
PLoS One ; 18(3): e0281900, 2023.
Article in English | MEDLINE | ID: mdl-36913348

ABSTRACT

Machine learning (ML) algorithms to detect critical findings on head CTs may expedite patient management. Most ML algorithms for diagnostic imaging analysis utilize dichotomous classifications to determine whether a specific abnormality is present. However, imaging findings may be indeterminate, and algorithmic inferences may have substantial uncertainty. We incorporated awareness of uncertainty into an ML algorithm that detects intracranial hemorrhage or other urgent intracranial abnormalities and evaluated prospectively identified, 1000 consecutive noncontrast head CTs assigned to Emergency Department Neuroradiology for interpretation. The algorithm classified the scans into high (IC+) and low (IC-) probabilities for intracranial hemorrhage or other urgent abnormalities. All other cases were designated as No Prediction (NP) by the algorithm. The positive predictive value for IC+ cases (N = 103) was 0.91 (CI: 0.84-0.96), and the negative predictive value for IC- cases (N = 729) was 0.94 (0.91-0.96). Admission, neurosurgical intervention, and 30-day mortality rates for IC+ was 75% (63-84), 35% (24-47), and 10% (4-20), compared to 43% (40-47), 4% (3-6), and 3% (2-5) for IC-. There were 168 NP cases, of which 32% had intracranial hemorrhage or other urgent abnormalities, 31% had artifacts and postoperative changes, and 29% had no abnormalities. An ML algorithm incorporating uncertainty classified most head CTs into clinically relevant groups with high predictive values and may help accelerate the management of patients with intracranial hemorrhage or other urgent intracranial abnormalities.


Subject(s)
Deep Learning , Humans , Uncertainty , Tomography, X-Ray Computed/methods , Intracranial Hemorrhages/diagnostic imaging , Algorithms , Retrospective Studies
14.
Acad Radiol ; 30(2): 341-348, 2023 02.
Article in English | MEDLINE | ID: mdl-34635436

ABSTRACT

INTRODUCTION: Clinical validation studies have demonstrated the ability of accelerated MRI sequences to decrease acquisition time and motion artifact while preserving image quality. The operational benefits, however, have been less explored. Here, we report our initial clinical experience in implementing fast MRI techniques for outpatient brain imaging during the COVID-19 pandemic. METHODS: Aggregate acquisition times were extracted from the medical record on consecutive imaging examinations performed during matched pre-implementation (7/1/2019-12/31/2019) and post-implementation periods (7/1/2020-12/31/2020). Expected acquisition time reduction for each MRI protocol was calculated through manual collection of acquisition times for the conventional and accelerated sequences performed during the pre- and post-implementation periods. Aggregate and expected acquisition times were compared for the five most frequently performed brain MRI protocols: brain without contrast (BR-), brain with and without contrast (BR+), multiple sclerosis (MS), memory loss (MML), and epilepsy (EPL). RESULTS: The expected time reductions for BR-, BR+, MS, MML, and EPL protocols were 6.6 min, 11.9 min, 14 min, 10.8 min, and 14.1 min, respectively. The overall median aggregate acquisition time was 31 [25, 36] min for the pre-implementation period and 18 [15, 22] min for the post-implementation period, with a difference of 13 min (42%). The median acquisition time was reduced by 4 min (25%) for BR-, 14.0 min (44%) for BR+, 14 min (38%) for MS, 11 min (52%) for MML, and 16 min (35%) for EPL. CONCLUSION: The implementation of fast brain MRI sequences significantly reduced the acquisition times for the most commonly performed outpatient brain MRI protocols.


Subject(s)
COVID-19 , Multiple Sclerosis , Humans , Outpatients , Pandemics , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain/diagnostic imaging
15.
Radiology ; 306(3): e220522, 2023 03.
Article in English | MEDLINE | ID: mdl-36346311

ABSTRACT

Background Portable, low-field-strength (0.064-T) MRI has the potential to transform neuroimaging but is limited by low spatial resolution and low signal-to-noise ratio. Purpose To implement a machine learning super-resolution algorithm that synthesizes higher spatial resolution images (1-mm isotropic) from lower resolution T1-weighted and T2-weighted portable brain MRI scans, making them amenable to automated quantitative morphometry. Materials and Methods An external high-field-strength MRI data set (1-mm isotropic scans from the Open Access Series of Imaging Studies data set) and segmentations for 39 regions of interest (ROIs) in the brain were used to train a super-resolution convolutional neural network (CNN). Secondary analysis of an internal test set of 24 paired low- and high-field-strength clinical MRI scans in participants with neurologic symptoms was performed. These were part of a prospective observational study (August 2020 to December 2021) at Massachusetts General Hospital (exclusion criteria: inability to lay flat, body habitus preventing low-field-strength MRI, presence of MRI contraindications). Three well-established automated segmentation tools were applied to three sets of scans: high-field-strength (1.5-3 T, reference standard), low-field-strength (0.064 T), and synthetic high-field-strength images generated from the low-field-strength data with the CNN. Statistical significance of correlations was assessed with Student t tests. Correlation coefficients were compared with Steiger Z tests. Results Eleven participants (mean age, 50 years ± 14; seven men) had full cerebrum coverage in the images without motion artifacts or large stroke lesion with distortion from mass effect. Direct segmentation of low-field-strength MRI yielded nonsignificant correlations with volumetric measurements from high field strength for most ROIs (P > .05). Correlations largely improved when segmenting the synthetic images: P values were less than .05 for all ROIs (eg, for the hippocampus [r = 0.85; P < .001], thalamus [r = 0.84; P = .001], and whole cerebrum [r = 0.92; P < .001]). Deviations from the model (z score maps) visually correlated with pathologic abnormalities. Conclusion This work demonstrated proof-of-principle augmentation of portable MRI with a machine learning super-resolution algorithm, which yielded highly correlated brain morphometric measurements to real higher resolution images. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Ertl-Wagner amd Wagner in this issue. An earlier incorrect version appeared online. This article was corrected on February 1, 2023.


Subject(s)
Magnetic Resonance Imaging , Stroke , Male , Humans , Middle Aged , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Machine Learning , Neuroimaging
16.
Eur Radiol ; 33(4): 2905-2915, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36460923

ABSTRACT

OBJECTIVES: High-resolution post-contrast T1-weighted imaging is a workhorse sequence in the evaluation of neurological disorders. The T1-MPRAGE sequence has been widely adopted for the visualization of enhancing pathology in the brain. However, this three-dimensional (3D) acquisition is lengthy and prone to motion artifact, which often compromises diagnostic quality. The goal of this study was to compare a highly accelerated wave-controlled aliasing in parallel imaging (CAIPI) post-contrast 3D T1-MPRAGE sequence (Wave-T1-MPRAGE) with the standard 3D T1-MPRAGE sequence for visualizing enhancing lesions in brain imaging at 3 T. METHODS: This study included 80 patients undergoing contrast-enhanced brain MRI. The participants were scanned with a standard post-contrast T1-MPRAGE sequence (acceleration factor [R] = 2 using GRAPPA parallel imaging technique, acquisition time [TA] = 5 min 18 s) and a prototype post-contrast Wave-T1-MPRAGE sequence (R = 4, TA = 2 min 32 s). Two neuroradiologists performed a head-to-head evaluation of both sequences and rated the visualization of enhancement, sharpness, noise, motion artifacts, and overall diagnostic quality. A 15% noninferiority margin was used to test whether post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE. Inter-rater and intra-rater agreement were calculated. Quantitative assessment of CNR/SNR was performed. RESULTS: Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE for delineating enhancing lesions with unanimous agreement in all cases between raters. Wave-T1-MPRAGE was noninferior in the perception of noise (p < 0.001), motion artifact (p < 0.001), and overall diagnostic quality (p < 0.001). CONCLUSION: High-accelerated post-contrast Wave-T1-MPRAGE enabled a two-fold reduction in acquisition time compared to the standard sequence with comparable performance for visualization of enhancing pathology and equivalent perception of noise, motion artifacts and overall diagnostic quality without loss of clinically important information. KEY POINTS: • Post-contrast wave-controlled aliasing in parallel imaging (CAIPI) T1-MPRAGE accelerated the acquisition of three-dimensional (3D) high-resolution post-contrast images by more than two-fold. • Post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE with unanimous agreement between reviewers (100% in 80 cases) for the visualization of intracranial enhancing lesions. • Wave-T1-MPRAGE was equivalent to the standard sequence in the perception of noise in 94% (75 of 80) of cases and was preferred in 16% (13 of 80) of cases for decreased motion artifact.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Artifacts , Motion
18.
Eur Radiol ; 32(10): 7128-7135, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35925387

ABSTRACT

OBJECTIVES: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T. METHODS: In this study, 172 patients undergoing 1.5 T brain MRI were scanned with a more commonly used susceptibility sequence (standard SWI or T2*w-GRE) and a highly accelerated Wave-SWI sequence. Two radiologists blinded to the acquisition technique scored each sequence for visualization of pathology, motion and signal dropout artifacts, image noise, visualization of normal anatomy (vessels and basal ganglia mineralization), and overall diagnostic quality. Superiority testing was performed to compare Wave-SWI to T2*w-GRE, and non-inferiority testing with 15% margin was performed to compare Wave-SWI to standard SWI. RESULTS: Wave-SWI performed superior in terms of visualization of pathology, signal dropout artifacts, visualization of normal anatomy, and overall image quality when compared to T2*w-GRE (all p < 0.001). Wave-SWI was non-inferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall image quality (all p < 0.001). Wave-SWI was superior to standard SWI for motion artifact (p < 0.001), while both conventional susceptibility sequences were superior to Wave-SWI for image noise (p < 0.001). CONCLUSIONS: Wave-SWI can be performed in a 1.5 T clinical setting with robust performance and preservation of diagnostic quality. KEY POINTS: • Wave-SWI accelerated the acquisition of 3D high-resolution susceptibility images in 70% of the acquisition time of the conventional T2*GRE. • Wave-SWI performed superior to T2*w-GRE for visualization of pathology, signal dropout artifacts, and overall diagnostic image quality. • Wave-SWI was noninferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall diagnostic image quality.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Artifacts , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
19.
Resuscitation ; 173: 103-111, 2022 04.
Article in English | MEDLINE | ID: mdl-35149137

ABSTRACT

BACKGROUND: Studies of neurologic outcomes have found conflicting results regarding differences between patients with substance-related cardiac arrests (SRCA) and non-SRCA. We investigate the effects of SRCA on severe cerebral edema development, a neuroimaging intermediate endpoint for neurologic injury. METHODS: 327 out-of-hospital comatose cardiac arrest patients were retrospectively analyzed. Demographics and baseline clinical characteristics were examined. SRCA categorization was based on admission toxicology screens. Severe cerebral edema classification was based on radiology reports. Poor clinical outcomes were defined as discharge Cerebral Performance Category scores > 3. RESULTS: SRCA patients (N = 86) were younger (P < 0.001), and more likely to have non-shockable rhythms (P < 0.001), be unwitnessed (P < 0.001), lower Glasgow Coma Scale scores (P < 0.001), absent brainstem reflexes (P < 0.05) and develop severe cerebral edema (P < 0.001) than non-SRCA patients (N = 241). Multivariable analyses found younger age (P < 0.001), female sex (P = 0.008), non-shockable rhythm (P = 0.01) and SRCA (P = 0.05) to be predictors of severe cerebral edema development. Older age (P < 0.001), non-shockable rhythm (P = 0.02), severe cerebral edema (P < 0.001), and absent pupillary light reflexes (P = 0.004) were predictors of poor outcomes. SRCA patients had higher proportion of brain deaths (P < 0.001) compared to non-SRCA patients. CONCLUSIONS: SRCA results in higher rates of severe cerebral edema development and brain death. The absence of statistically significant differences in discharge outcomes or survival between SRCA and non-SRCA patients may be related to the higher rate of withdrawal of life-sustaining treatment (WLST) in the non-SRCA group. Future neuroprognostic studies may opt to include neuroimaging markers as intermediate measures of neurologic injury which are not influenced by WLST decisions.


Subject(s)
Brain Edema , Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Brain Edema/diagnostic imaging , Brain Edema/etiology , Cardiopulmonary Resuscitation/methods , Coma , Female , Glasgow Coma Scale , Humans , Out-of-Hospital Cardiac Arrest/etiology , Out-of-Hospital Cardiac Arrest/therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL