Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 7(1): 490, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22937902

ABSTRACT

Electronic transport in unintentionally doped GaxIn1-xN alloys with various Ga concentrations (x = 0.06, 0.32 and 0.52) is studied. Hall effect measurements are performed at temperatures between 77 and 300 K. Temperature dependence of carrier mobility is analysed by an analytical formula based on two-dimensional degenerate statistics by taking into account all major scattering mechanisms for a two-dimensional electron gas confined in a triangular quantum well between GaxIn1-xN epilayer and GaN buffer. Experimental results show that as the Ga concentration increases, mobility not only decreases drastically but also becomes less temperature dependent. Carrier density is almost temperature independent and tends to increase with increasing Ga concentration. The weak temperature dependence of the mobility may be attributed to screening of polar optical phonon scattering at high temperatures by the high free carrier concentration, which is at the order of 1014 cm-2. In our analytical model, the dislocation density is used as an adjustable parameter for the best fit to the experimental results. Our results reveal that in the samples with lower Ga compositions and carrier concentrations, alloy and interface roughness scattering are the dominant scattering mechanisms at low temperatures, while at high temperatures, optical phonon scattering is the dominant mechanism. In the samples with higher Ga compositions and carrier concentrations, however, dislocation scattering becomes more significant and suppresses the effect of longitudinal optical phonon scattering at high temperatures, leading to an almost temperature-independent behaviour.

2.
J Phys Condens Matter ; 21(17): 174208, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-21825412

ABSTRACT

We review our recent progress on the fabrication of near-infrared photodetectors based on intersubband transitions in AlN/GaN superlattice structures. Such devices were first demonstrated in 2003, and have since then seen a quite substantial development both in terms of detector responsivity and high speed operation. Nowadays, the most impressive results include characterization up to 3 GHz using a directly modulated semiconductor laser and up to 13.3 GHz using an ultra-short pulse solid state laser.

3.
J Electron Microsc (Tokyo) ; 54(3): 243-50, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16123056

ABSTRACT

Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) have been used to study compositional modulation in In(x)Ga(1-x) N layers grown with compositions close to miscibility gap. The samples (0.34 < x < 0.8) were deposited by molecular beam epitaxy using either a 200 nm thick AlN or GaN buffer layer grown on a sapphire substrate. Periodic compositional modulation leads to extra electron diffraction spots and satellite reflections in XRD in the theta-2theta coupled geometry. The ordering period delta measured along c-axis was about delta = 45 A for x = 0.5 and delta = 66 A for x = 0.78 for samples grown on AlN buffer layer. TEM and XRD determinations of delta were in good agreement. Compositional modulation was not observed for the sample with x = 0.34 grown on a GaN buffer layer. Larger values of delta were observed for layers with higher In content and for those having larger mismatch with the underlying AlN buffer layer. The possibility that the roughness of the AlN growth surface promotes strong In segregation on particular crystallographic planes leading to compositional modulation is considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...