Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Adv Biol (Weinh) ; 8(4): e2300633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342586

ABSTRACT

Ceramides and cardiorespiratory (CR) fitness are both related to cardiovascular diseases. The associations of three blood plasma ceramides (C16:0, C22:0, and C24:0) with CR fitness in the population-based Study of Health in Pomerania (SHIP-START-1; n = 1,102; mean age 50.3 years, 51.5% women) are investigated. In addition, subgroup analysis according to age (

Subject(s)
Cardiorespiratory Fitness , Cardiovascular Diseases , Humans , Male , Female , Middle Aged , Ceramides , Biomarkers , Cardiovascular Diseases/epidemiology
2.
J Clin Invest ; 134(3)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38032734

ABSTRACT

Pancreatic ß cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair ß cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion is similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on ß cell mRNA translation. Before induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our study uncovered a translational regulatory circuit during ß cell glucose toxicity that impairs expression of proteins with critical roles in ß cell function.


Subject(s)
Hyperglycemia , Insulin-Secreting Cells , Islets of Langerhans , Pancreatic Neoplasms , Rats , Humans , Animals , Insulin Secretion , RNA, Messenger/metabolism , Insulin/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Peptides/metabolism , Pancreatic Neoplasms/metabolism , Islets of Langerhans/metabolism
3.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808767

ABSTRACT

Pancreatic ß-cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair ß-cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion are similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on ß-cell mRNA translation. Prior to induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also of mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex-vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our findings uncover a translational regulatory circuit during ß-cell glucose toxicity that impairs expression of proteins with critical roles in ß-cell function.

4.
Nature ; 621(7977): 47-48, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648821

Subject(s)
Lipids , Lipogenesis
5.
EBioMedicine ; 92: 104627, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37267847

ABSTRACT

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Subject(s)
Gangliosidosis, GM1 , Neurodegenerative Diseases , Animals , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/therapy , Gangliosidosis, GM1/pathology , Neurodegenerative Diseases/therapy , Chromatography, Liquid , Tandem Mass Spectrometry , beta-Galactosidase/genetics , beta-Galactosidase/chemistry , beta-Galactosidase/therapeutic use , Biomarkers/cerebrospinal fluid , Genetic Therapy
7.
Nat Commun ; 12(1): 5214, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471131

ABSTRACT

Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are not well understood. Herein, we show that disruption of the box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in cultured cells. This protection from metabolic stress is associated with broad reprogramming of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a role for SNORA73 in the regulation of metabolism and lipotoxicity.


Subject(s)
Fatty Liver/drug therapy , Fatty Liver/metabolism , Protective Agents/pharmacology , RNA, Small Nucleolar/metabolism , Animals , CHO Cells , Cell Death/drug effects , Cricetulus , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/genetics , Homeostasis , Inflammation , Lipid Metabolism , Lipids/pharmacology , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , RNA, Long Noncoding , RNA, Small Nucleolar/genetics , Signal Transduction/drug effects
8.
ACS Chem Biol ; 16(8): 1493-1507, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34355883

ABSTRACT

Aliphatic diazirine analogues of cholesterol have been used previously to elaborate the cholesterol proteome and identify cholesterol binding sites on proteins. Cholesterol analogues containing the trifluoromethylphenyl diazirine (TPD) group have not been reported. Both classes of diazirines have been prepared for neurosteroid photolabeling studies and their combined use provided information that was not obtainable with either diazirine class alone. Hence, we prepared cholesterol TPD analogues and used them along with previously reported aliphatic diazirine analogues as photoaffinity labeling reagents to obtain additional information on the cholesterol binding sites of the pentameric Gloeobacter ligand-gated ion channel (GLIC). We first validated the TPD analogues as cholesterol substitutes and compared their actions with those of previously reported aliphatic diazirines in cell culture assays. All the probes bound to the same cholesterol binding site on GLIC but with differences in photolabeling efficiencies and residues identified. Photolabeling of mammalian (HEK) cell membranes demonstrated differences in the pattern of proteins labeled by the two classes of probes. Collectively, these date indicate that cholesterol photoaffinity labeling reagents containing an aliphatic diazirine or TPD group provide complementary information and will both be useful tools in future studies of cholesterol biology.


Subject(s)
Cholesterol/analogs & derivatives , Diazomethane/analogs & derivatives , Ligand-Gated Ion Channels/chemistry , Photoaffinity Labels/chemistry , Alkynes/chemical synthesis , Alkynes/chemistry , Alkynes/metabolism , Binding Sites , Cholesterol/chemical synthesis , Cholesterol/metabolism , Cyanobacteria/chemistry , Diazomethane/chemical synthesis , Diazomethane/metabolism , Fluorescent Dyes/chemistry , Ligand-Gated Ion Channels/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Photoaffinity Labels/chemical synthesis , Photoaffinity Labels/metabolism , Protein Binding
9.
Mol Genet Metab ; 131(4): 405-417, 2020 12.
Article in English | MEDLINE | ID: mdl-33257258

ABSTRACT

Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3ß,5α,6ß-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-ß-cyclodextrin (HPßCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Subject(s)
Glycine/blood , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/blood , Niemann-Pick Disease, Type C/genetics , 2-Hydroxypropyl-beta-cyclodextrin/administration & dosage , Bile Acids and Salts/blood , Biomarkers/blood , Female , Glycine/analogs & derivatives , Glycine/isolation & purification , Humans , Male , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/pathology , Tandem Mass Spectrometry , Vesicular Transport Proteins/genetics
10.
J Lipid Atheroscler ; 9(1): 172-183, 2020.
Article in English | MEDLINE | ID: mdl-32489964

ABSTRACT

OBJECTIVE: Total ceramide concentrations are linked with increased insulin resistance and cardiac dysfunction. However, recent studies have demonstrated that plasma concentrations of specific very-long-chain fatty ceramides (C24:0 and C22:0) are associated with a reduced incidence of coronary heart disease and all-cause mortality. We hypothesized that specific genetic loci are associated with plasma C22:0 and C24:0 concentrations. METHODS: Heritability and genome-wide association studies of plasma C24:0 and C22:0 ceramide concentrations were performed among 2,217 participants in the Framingham Heart Study Offspring Cohort, adjusting for cardiovascular risk factor covariates and cardiovascular drug treatment. RESULTS: The multivariable-adjusted heritability for C22:0 and C24:0 ceramides was 0.42 (standard error [SE], 0.07; p=1.8E-9) and 0.25 (SE, 0.08; p=0.00025), respectively. Nineteen single nucleotide polymorphisms (SNPs), all on chromosome 20, significantly associated with C22:0 concentrations; the closest gene to these variants was SPTLC3. The lead SNP (rs4814175) significantly associated with 3% lower plasma C22:0 concentrations (p=2.83E-11). Nine SNPs, all on chromosome 20 and close to SPTLC3, were significantly associated with C24:0 ceramide concentrations. All 9 were also significantly related to plasma C22:0 levels. The lead SNP (rs168622) was significantly associated with 10% lower plasma C24:0 ceramide concentrations (p=9.94E-09). CONCLUSION: SNPs near the SPTLC3 gene, which encodes serine palmitoyltransferase long chain base subunit 3 (SPTLC3; part of the enzyme that catalyzes the rate-limiting step of de novo sphingolipid synthesis) were associated with plasma C22:0 and C24:0 ceramide concentrations. These results are biologically plausible and suggest that SPTLC3 may be a potential therapeutic target for C24:0 and C22:0 ceramide modulation.

11.
J Lipid Res ; 61(7): 1065-1074, 2020 07.
Article in English | MEDLINE | ID: mdl-32393551

ABSTRACT

Cardiac dysfunction in T2D is associated with excessive FA uptake, oxidation, and generation of toxic lipid species by the heart. It is not known whether decreasing lipid delivery to the heart can effect improvement in cardiac function in humans with T2D. Thus, our objective was to test the hypothesis that lowering lipid delivery to the heart would result in evidence of decreased "lipotoxicity," improved cardiac function, and salutary effects on plasma biomarkers of cardiovascular risk. Thus, we performed a double-blind randomized placebo-controlled parallel design study of the effects of 12 weeks of fenofibrate-induced lipid lowering on cardiac function, inflammation, and oxidation biomarkers, and on the ratio of two plasma ceramides, Cer d18:1 (4E) (1OH, 3OH)/24:0 and Cer d18:1 (4E) (1OH, 3OH)/16:0 (i.e., "C24:0/C16:0"), which is associated with decreased risk of cardiac dysfunction and heart failure. Fenofibrate lowered plasma TG and cholesterol but did not improve heart systolic or diastolic function. Fenofibrate treatment lowered the plasma C24:0/C16:0 ceramide ratio and minimally altered oxidative stress markers but did not alter measures of inflammation. Overall, plasma TG lowering correlated with improvement of cardiac relaxation (diastolic function) as measured by tissue Doppler-derived parameter e'. Moreover, lowering the plasma C24:0/C16:0 ceramide ratio was correlated with worse diastolic function. These findings indicate that fenofibrate treatment per se is not sufficient to effect changes in cardiac function; however, decreases in plasma TG may be linked to improved diastolic function. In contrast, decreases in plasma C24:0/C16:0 are linked with worsening cardiac function.


Subject(s)
Ceramides/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Fenofibrate/therapeutic use , Heart/drug effects , Heart/physiopathology , Triglycerides/blood , Adult , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Male , Middle Aged
12.
J Biol Chem ; 295(25): 8628-8635, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32393576

ABSTRACT

Excess fatty acid accumulation in nonadipose tissues leads to cell dysfunction and cell death that is linked to the pathogenesis of inherited and acquired human diseases. Study of this process, known as lipotoxicity, has provided new insights into the regulation of lipid homeostasis and has revealed new molecular pathways involved in lipid-induced cellular stress. The discovery that disruption of specific small nucleolar RNAs protects against fatty acid-induced cell death and remodels metabolism in vivo opens new opportunities for understanding how nutrient signals influence cellular and systemic metabolic homeostasis through RNA biology.


Subject(s)
Cell Death , Fatty Acids/metabolism , RNA, Small Nucleolar/metabolism , Animals , Cell Death/drug effects , Endoplasmic Reticulum Stress/drug effects , Fatty Acids/toxicity , Humans , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Reactive Oxygen Species/metabolism
13.
Mol Genet Metab ; 129(4): 292-302, 2020 04.
Article in English | MEDLINE | ID: mdl-32033912

ABSTRACT

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPßCD treatment. In an intravenous (IV) HPßCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/drug therapy , Phosphorylcholine/blood , Phosphorylcholine/cerebrospinal fluid , Adolescent , Adult , Aged , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cats , Child , Child, Preschool , Chromatography, Liquid , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Sensitivity and Specificity , Severity of Illness Index , Tandem Mass Spectrometry , Treatment Outcome , Young Adult
14.
J Lipid Res ; 61(3): 403-412, 2020 03.
Article in English | MEDLINE | ID: mdl-31988149

ABSTRACT

Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-ß-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD's mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.


Subject(s)
Cholesterol/metabolism , Cyclodextrins/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cholesterol/analysis , Homeostasis/drug effects , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Isotope Labeling , Lysosomes/chemistry , Lysosomes/metabolism , Niemann-Pick C1 Protein
15.
Ann Clin Transl Neurol ; 7(2): 160-168, 2020 02.
Article in English | MEDLINE | ID: mdl-31950603

ABSTRACT

BACKGROUND: We determined the association between ratios of plasma ceramide species of differing fatty-acyl chain lengths and incident dementia and Alzheimer's disease (AD) dementia in a large, community-based sample. METHODS: We measured plasma ceramide levels in 1892 [54% women, mean age 70.1 (SD 6.9) yr.] dementia-free Framingham Offspring Study cohort participants between 2005 and 2008. We related ratios of very long-chain (C24:0, C22:0) to long-chain (C16:0) ceramides to subsequent risk of incident dementia and AD dementia. Structural MRI brain measures were included as secondary outcomes. RESULTS: During a median 6.5 year follow-up, 81 participants developed dementia, of whom 60 were diagnosed with AD dementia. In multivariable Cox-proportional hazards analyses, each standard deviation (SD) increment in the ratio of ceramides C24:0/C16:0 was associated with a 27% reduction in the risk of dementia (HR 0.73, 95% CI 0.56-0.96) and AD dementia (HR 0.73, 95% CI 0.53-1.00). The ratio of ceramides C22:0/C16:0 was also inversely associated with incident dementia (HR per SD 0.75, 95% CI 0.57-0.98), and approached statistical significance for AD (HR 0.73, 95% CI 0.53-1.01, P = 0.056). Higher ratios of ceramides C24:0/C16:0 and C22:0/C16:0 were also cross-sectionally associated with lower white matter hyperintensity burden on MRI (-0.05 ± 0.02, P = 0.02; -0.06 ± 0.02, P = 0.003; respectively per SD increase), but not with other MRI brain measures. CONCLUSIONS: Higher plasma ratios of very long-chain to long-chain ceramides are associated with a reduced risk of incident dementia and AD dementia in our community-based sample. Circulating ceramide ratios may serve as potential biomarkers for predicting dementia risk in cognitively healthy adults.


Subject(s)
Aging/blood , Ceramides/blood , Dementia/blood , Dementia/epidemiology , Leukoaraiosis/blood , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/epidemiology , Biomarkers/blood , Cross-Sectional Studies , Female , Humans , Leukoaraiosis/diagnostic imaging , Leukoaraiosis/pathology , Longitudinal Studies , Magnetic Resonance Imaging , Male , Massachusetts/epidemiology , Middle Aged , Proportional Hazards Models
16.
J Lipid Res ; 60(8): 1410-1424, 2019 08.
Article in English | MEDLINE | ID: mdl-31201291

ABSTRACT

Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.


Subject(s)
Niemann-Pick Disease, Type C/metabolism , Phosphorylcholine/metabolism , Animals , Biomarkers/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred BALB C , Mice, Knockout , Niemann-Pick Disease, Type C/genetics
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1545-1561, 2019 10.
Article in English | MEDLINE | ID: mdl-31051283

ABSTRACT

Niemann-Pick type C1 (NPC1) disease is a fatal neurovisceral disease for which there are no FDA approved treatments, though cyclodextrin (HPßCD) slows disease progression in preclinical models and in an early phase clinical trial. Our goal was to evaluate the mechanism of action of a previously described combination-therapy, Triple Combination Formulation (TCF) - comprised of the histone deacetylase inhibitor (HDACi) vorinostat/HPßCD/PEG - shown to prolong survival in Npc1 mice. In these studies, TCF's benefit was attributed to enhanced vorinostat pharmacokinetics (PK). Here, we show that TCF reduced lipid storage, extended lifespan, and preserved neurological function in Npc1 mice. Unexpectedly, substitution of an inactive analog for vorinostat in TCF revealed similar efficacy. We demonstrate that the efficacy of TCF was attributable to enhanced HPßCD PK and independent of NPC1 protein expression. We conclude that although HDACi effectively reduce cholesterol storage in NPC1-deficient cells, HDACi are ineffective in vivo in Npc1 mice.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Niemann-Pick Disease, Type C/drug therapy , Polyethylene Glycols/therapeutic use , Vorinostat/therapeutic use , Animals , Cells, Cultured , Drug Combinations , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred BALB C , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolism
18.
J Lipid Res ; 60(3): 707-716, 2019 03.
Article in English | MEDLINE | ID: mdl-30617147

ABSTRACT

Cholesterol is an essential structural component of cellular membranes and precursor molecule for oxysterol, bile acid, and hormone synthesis. The study of intracellular cholesterol trafficking pathways has been limited in part due to a lack of suitable cholesterol analogues. Herein, we developed three novel diazirine alkyne cholesterol probes: LKM38, KK174, and KK175. We evaluated these probes as well as a previously described diazirine alkyne cholesterol analogue, trans-sterol, for their fidelity as cholesterol mimics and for study of cholesterol trafficking. LKM38 emerged as a promising cholesterol mimic because it both sustained the growth of cholesterol-auxotrophic cells and appropriately regulated key cholesterol homeostatic pathways. When presented as an ester in lipoprotein particles, LKM38 initially localized to the lysosome and subsequently trafficked to the plasma membrane and endoplasmic reticulum. LKM38 bound to diverse, established cholesterol binding proteins. Through a detailed characterization of the cellular behavior of a panel of diazirine alkyne probes using cell biological, biochemical trafficking assays and immunofluorescence approaches, we conclude that LKM38 can serve as a powerful tool for the study of cholesterol protein interactions and trafficking.


Subject(s)
Alkynes/chemistry , Cholesterol/metabolism , Diazomethane/chemical synthesis , Diazomethane/metabolism , Intracellular Space/metabolism , Molecular Probes/chemical synthesis , Molecular Probes/metabolism , Biological Transport , Cell Line, Tumor , Chemistry Techniques, Synthetic , Diazomethane/chemistry , Homeostasis , Humans , Lipoproteins/metabolism , Lysosomes/metabolism , Molecular Probes/chemistry
19.
Mol Genet Metab ; 126(2): 183-187, 2019 02.
Article in English | MEDLINE | ID: mdl-30172462

ABSTRACT

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3ß,5α,6ß-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.


Subject(s)
Bile Acids and Salts/analysis , Dried Blood Spot Testing , Niemann-Pick Disease, Type C/blood , Niemann-Pick Disease, Type C/diagnosis , Biological Specimen Banks , Biomarkers/blood , California , Case-Control Studies , Chromatography, Liquid , Female , Humans , Infant, Newborn , Male , Michigan , Neonatal Screening , New York , Retrospective Studies , Tandem Mass Spectrometry
20.
Circulation ; 138(3): 305-315, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30012703

ABSTRACT

Lipid droplets (LDs) are distinct and dynamic organelles that affect the health of cells and organs. Much progress has been made in understanding how these structures are formed, how they interact with other cellular organelles, how they are used for storage of triacylglycerol in adipose tissue, and how they regulate lipolysis. Our understanding of the biology of LDs in the heart and vascular tissue is relatively primitive in comparison with LDs in adipose tissue and liver. The National Heart, Lung, and Blood Institute convened a working group to discuss how LDs affect cardiovascular diseases. The goal of the working group was to examine the current state of knowledge on the cell biology of LDs, including current methods to study them in cells and organs and reflect on how LDs influence the development and progression of cardiovascular diseases. This review summarizes the working group discussion and recommendations on research areas ripe for future investigation that will likely improve our understanding of atherosclerosis and heart function.


Subject(s)
Cardiovascular Diseases/metabolism , Lipid Droplets/metabolism , Myocardium/metabolism , Animals , Cardiovascular Diseases/genetics , Consensus Development Conferences, NIH as Topic , Disease Models, Animal , Gene-Environment Interaction , Humans , Lipid Metabolism , National Heart, Lung, and Blood Institute (U.S.) , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...