Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters











Publication year range
1.
Elife ; 132024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271217

ABSTRACT

The ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.


Subject(s)
B-Lymphocytes , Signal Transduction , B-Lymphocytes/metabolism
2.
Front Immunol ; 13: 978658, 2022.
Article in English | MEDLINE | ID: mdl-36119034

ABSTRACT

The CD3 subunits of the T-cell antigen receptor (TCR) play a central role in regulation of surface TCR expression levels. Humans who lack CD3γ (γ-) show reduced surface TCR expression levels and abolished phorbol ester (PMA)-induced TCR down-regulation. The response to PMA is mediated by a double leucine motif in the intracellular (IC) domain of CD3γ. However, the molecular cause of the reduced TCR surface expression in γ- lymphocytes is still not known. We used retroviral vectors carrying wild type CD3γ or CD3δ or the following chimeras (EC-extracellular, TM-transmembrane and IC): δECγTMγIC (δγγ for short), γγδ, γδδ and γγ-. Expression of γγγ, γγδ, γδδ or γγ- in the γ- T cell line JGN, which lacks surface TCR, demonstrated that cell surface TCR levels in JGN were dependent on the EC domain of CD3γ and could not be replaced by the one of CD3δ. In JGN and primary γ- patient T cells, the tested chimeras confirmed that the response to PMA maps to the IC domain of CD3γ. Since protein homology explains these results better than domain structure, we conclude that CD3γ contributes conformational cues that improve surface TCR expression, likely at the assembly or membrane transport steps. In JGN cells all chimeric TCRs were signalling competent. However, an IC domain at CD3γ was required for TCR-induced IL-2 and TNF-α production and CD69 expression, indicating that a TCR without a CD3γ IC domain has altered signalling capabilities.


Subject(s)
Interleukin-2 , Tumor Necrosis Factor-alpha , CD3 Complex , Humans , Leucine , Phorbol Esters , Receptors, Antigen, T-Cell/metabolism
3.
Front Cell Dev Biol ; 9: 674572, 2021.
Article in English | MEDLINE | ID: mdl-34169073

ABSTRACT

Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.

4.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066527

ABSTRACT

Activation of T cells by agonistic peptide-MHC can be inhibited by antagonistic ones. However, the exact mechanism remains elusive. We used Jurkat cells expressing two different TCRs and tested whether stimulation of the endogenous TCR by agonistic anti-Vß8 antibodies can be modulated by ligand-binding to the second, optogenetic TCR. The latter TCR uses phytochrome B tetramers (PhyBt) as ligand, the binding half-life of which can be altered by light. We show that this half-life determined whether the PhyBt acted as a second agonist (long half-life), an antagonist (short half-life) or did not have any influence (very short half-life) on calcium influx. A mathematical model of this cross-antagonism shows that a mechanism based on an inhibitory signal generated by early recruitment of a phosphatase and an activating signal by later recruitment of a kinase explains the data.


Subject(s)
Optogenetics , Receptors, Antigen, T-Cell/antagonists & inhibitors , Antibodies/metabolism , Cell Membrane/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Half-Life , Humans , Jurkat Cells , Ligands , Models, Biological , Receptors, Antigen, T-Cell/metabolism
5.
Sci Adv ; 7(25)2021 06.
Article in English | MEDLINE | ID: mdl-34134986

ABSTRACT

Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.


Subject(s)
Dependovirus , Gene Transfer Techniques , Dependovirus/genetics , Dependovirus/metabolism , Genetic Therapy/methods , Genetic Vectors/genetics , Transduction, Genetic
6.
Cells ; 10(4)2021 04 07.
Article in English | MEDLINE | ID: mdl-33917227

ABSTRACT

The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαß heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Oncogene Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , CD3 Complex/metabolism , Humans , Jurkat Cells , Phosphorylation , Protein Binding , ZAP-70 Protein-Tyrosine Kinase/metabolism
7.
Bio Protoc ; 10(5): e3540, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-33659514

ABSTRACT

T cells are one major cell type of the immune system that use their T cell antigen receptor (TCR) to bind and respond to foreign molecules derived from pathogens. The ligand-TCR interaction half-lives determine stimulation outcome. Until recently, scientists relied on mutating either the TCR or its ligands to investigate how varying TCR-ligand interaction durations impacted on T cell activation. Our newly created opto-ligand-TCR system allowed us to precisely and reversibly control ligand binding to the TCR by light illumination. This system uses phytochrome B (PhyB) tetramers as a light-regulated TCR ligand. PhyB can be photoconverted between a binding (ON) and non-binding (OFF) conformation by 660 nm and 740 nm light illumination, respectively. PhyB ON is able to bind to a synthetic TCR, generated by fusing the PhyB interacting factor (PIF) to the TCRß chain. Switching PhyB to the OFF conformation disrupts this interaction. Sufficiently long binding of PhyB tetramers to the PIF-TCR led to T cell activation as measured by calcium influx. Here, we describe protocols for how to generate the tetrameric ligand for our opto-ligand-TCR system, how to measure ligand-TCR binding by flow cytometry and how to quantify T cell activation via calcium influx.

8.
Bio Protoc ; 10(5): e3541, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-33659515

ABSTRACT

In the field of extracellular optogenetics, photoreceptors are applied outside of cells to obtain systems with a desired functionality. Among the diverse applied photoreceptors, phytochromes are the only ones that can be actively and reversibly switched between the active and inactive photostate by the illumination with cell-compatible red and far-red light. In this protocol, we describe the production of a biotinylated variant of the photosensory domain of A. thaliana phytochrome B (PhyB-AviTag) in E. coli with a single, optimized expression plasmid. We give detailed instructions for the purification of the protein by immobilized metal affinity chromatography and the characterization of the protein in terms of purity, biotinylation, spectral photoswitching and the light-dependent interaction with its interaction partner PIF6. In comparison to previous studies applying PhyB-AviTag, the optimized expression plasmid used in this protocol simplifies the production process and shows an increased yield and purity.

9.
J Immunol ; 203(2): 569-579, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31167772

ABSTRACT

During T cell development, Lck gene expression is temporally controlled by its proximal and distal promoters. The pLckCre transgenic mouse available from The Jackson Laboratory, in which the proximal promoter of Lck drives Cre expression, is a commonly used Cre driver line to recombine genes flanked by loxP sites in T cells. pLckCre drives recombination early in thymocyte development and is frequently used to delete genes in αß and γδ T cells. We found that pLckCre failed to efficiently delete floxed genes in γδ T cells in contrast to a complete deletion in conventional as well as unconventional αß T cells. Mechanistically, γδ T cells inefficiently transcribed the endogenous proximal Lck promoter compared with αß T cells during adult thymic development. A small population of γδ T cells that had activated pLckCre was detected, many of which were located in nonlymphoid organs as well as precommitted IL-17- or IFN-γ-producing γδ T effector cells. In newborn thymi, both pLckCre and endogenous Lck proximal promoter expression were substantially enhanced, giving rise to an elevated fraction of γδ T cells with recombined floxed genes that were increased in unique γδ T subsets, such as the IL-17-producing γδ T cells. Our data point out striking differences in Lck transcription between perinatal and adult γδ T cell development. Taken together, the data presented in this study shed new light on γδ T cell development and stimulate a reanalysis of data generated using the pLckCre transgenic mice.


Subject(s)
Integrases/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Animals , Cell Differentiation/genetics , Interleukin-17/genetics , Mice , Mice, Transgenic , T-Lymphocyte Subsets/immunology
10.
Front Immunol ; 10: 226, 2019.
Article in English | MEDLINE | ID: mdl-30863395

ABSTRACT

Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the known interaction partners, and could filter out all other proteins.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Light , Peptides/metabolism , Phytochrome B/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding, Competitive/radiation effects , Chromatography, Liquid/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Jurkat Cells , Optogenetics/methods , Peptides/genetics , Phytochrome B/genetics , Protein Binding/radiation effects , Tandem Mass Spectrometry/methods , ZAP-70 Protein-Tyrosine Kinase/genetics
11.
Adv Mater ; 31(12): e1806727, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30687975

ABSTRACT

Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.

12.
Commun Biol ; 2: 15, 2019.
Article in English | MEDLINE | ID: mdl-30652127

ABSTRACT

Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix-OptoIntegrin system may serve as a blueprint for rendering matrix-receptor interactions amendable to precise control with light.


Subject(s)
Extracellular Matrix/metabolism , Integrin alphaVbeta3/metabolism , Optogenetics/methods , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Extracellular Matrix/radiation effects , HEK293 Cells , HeLa Cells , Humans , Light , MCF-7 Cells , Phytochrome B/metabolism , Plasmids/genetics , Protein Conformation/radiation effects , Signal Transduction/radiation effects , Transfection
13.
Sci Rep ; 8(1): 15024, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30301909

ABSTRACT

Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch ('Blue-OFF'), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.


Subject(s)
Optogenetics/methods , Repressor Proteins/genetics , Transcriptional Activation/radiation effects , Animals , CHO Cells , Cricetulus , Gene Expression Regulation/radiation effects , Light , Models, Theoretical , Photic Stimulation , Protein Stability/radiation effects , Proteolysis/radiation effects
14.
mBio ; 8(4)2017 08 01.
Article in English | MEDLINE | ID: mdl-28765216

ABSTRACT

The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors.IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors.


Subject(s)
Adenoviridae Infections/immunology , Adenoviridae/pathogenicity , Immunity, Innate , Macrophages/immunology , Macrophages/virology , Receptors, Immunologic/metabolism , Animals , Cell Line , Inflammation/immunology , Interferon-alpha/metabolism , Interleukin-1alpha/metabolism , Interleukin-6/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Mice , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics
15.
J Immunol ; 198(1): 47-52, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27994168

ABSTRACT

The activity of the αß TCR is controlled by conformational switches. In the resting conformation, the TCR is not phosphorylated and is inactive. Binding of multivalent peptide-MHC to the TCR stabilizes the active conformation, leading to TCR signaling. These two conformations allow the TCRs to be allosterically regulated. We review recent data on heterotropic allostery where peptide-MHC and membrane cholesterol serve opposing functions as positive and negative allosteric regulators, respectively. In resting T cells cholesterol keeps TCRs in the resting conformation that otherwise would become spontaneously active. This regulation is well described by the classical Monod-Wyman-Changeux model of allostery. Moreover, the observation that TCRs assemble into nanoclusters might allow for homotropic allostery, in which individual TCRs could positively cooperate and thus enhance the sensitivity of T cell activation. This new view of TCR regulation will contribute to a better understanding of TCR functioning.


Subject(s)
Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Allosteric Regulation , Animals , Humans , Models, Molecular , Protein Conformation , Signal Transduction/immunology
16.
Nat Immunol ; 17(7): 844-50, 2016 07.
Article in English | MEDLINE | ID: mdl-27213689

ABSTRACT

Most adaptive immune responses require the activation of specific T cells through the T cell antigen receptor (TCR)-CD3 complex. Here we show that cholesterol sulfate (CS), a naturally occurring analog of cholesterol, inhibits CD3 ITAM phosphorylation, a crucial first step in T cell activation. In biochemical studies, CS disrupted TCR multimers, apparently by displacing cholesterol, which is known to bind TCRß. Moreover, CS-deficient mice showed heightened sensitivity to a self-antigen, whereas increasing CS content by intrathymic injection inhibited thymic selection, indicating that this molecule is an intrinsic regulator of thymocyte development. These results reveal a regulatory role for CS in TCR signaling and thymic selection, highlighting the importance of the membrane microenvironment in modulating cell surface receptor activation.


Subject(s)
Cell Membrane/metabolism , Cholesterol Esters/metabolism , Cholesterol/metabolism , T-Lymphocytes/physiology , Thymus Gland/immunology , Animals , Autoimmunity/genetics , Cells, Cultured , Cholesterol/analogs & derivatives , Clonal Selection, Antigen-Mediated , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Multimerization/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Signal Transduction , Sulfotransferases/genetics
17.
Immunity ; 44(5): 1091-101, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192576

ABSTRACT

Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαß transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRß transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction.


Subject(s)
Adaptive Immunity , Cholesterol/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes/immunology , Allosteric Regulation , Antigens/immunology , Antigens/metabolism , Histocompatibility Antigens/metabolism , Humans , Jurkat Cells , Lymphocyte Activation , Models, Immunological , Peptide Fragments/immunology , Peptide Fragments/metabolism , Phosphorylation , Protein Binding , Protein Conformation , Protein Stability , Signal Transduction
19.
J Exp Med ; 212(10): 1693-708, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26324445

ABSTRACT

B cell antigen receptor (BCR) signaling is critical for B cell development and activation. Using mass spectrometry, we identified a protein kinase D-interacting substrate of 220 kD (Kidins220)/ankyrin repeat-rich membrane-spanning protein (ARMS) as a novel interaction partner of resting and stimulated BCR. Upon BCR stimulation, the interaction increases in a Src kinase-independent manner. By knocking down Kidins220 in a B cell line and generating a conditional B cell-specific Kidins220 knockout (B-KO) mouse strain, we show that Kidins220 couples the BCR to PLCγ2, Ca(2+), and extracellular signal-regulated kinase (Erk) signaling. Consequently, BCR-mediated B cell activation was reduced in vitro and in vivo upon Kidins220 deletion. Furthermore, B cell development was impaired at stages where pre-BCR or BCR signaling is required. Most strikingly, λ light chain-positive B cells were reduced sixfold in the B-KO mice, genetically placing Kidins220 in the PLCγ2 pathway. Thus, our data indicate that Kidins220 positively regulates pre-BCR and BCR functioning.


Subject(s)
B-Lymphocytes/physiology , Membrane Proteins/metabolism , Receptors, Antigen, B-Cell/metabolism , Animals , B-Lymphocytes/immunology , Bone Marrow Cells/metabolism , Calcium/metabolism , Immunoglobulin D/metabolism , Immunoglobulin M/metabolism , Lymphocyte Activation , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phospholipase C gamma/metabolism , Spleen/cytology
20.
J Immunol ; 194(7): 3045-53, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25732729

ABSTRACT

The mechanisms underlying thymoma-associated immunodeficiency are largely unknown, and the significance of increased blood γδ Τ cells often remains elusive. In this study we address these questions based on an index patient with thymoma, chronic visceral leishmaniasis, myasthenia gravis, and a marked increase of rare γδ T cell subsets in the peripheral blood. This patient showed cutaneous anergy, even though he had normal numbers of peripheral blood total lymphocytes as well as CD4(+) and CD8(+) T cells. Despite his chronic infection, analyses of immunophenotypes and spectratyping of his lymphocytes revealed an unusual accumulation of naive γδ and αß T cells, suggesting a generalized T cell activation defect. Functional studies in vitro demonstrated substantially diminished IL-2 and IFN-γ production following TCR stimulation of his "untouched" naive CD4(+) T cells. Biochemical analysis revealed that his γδ and αß T cells carried an altered TCR complex with reduced amounts of the ζ-chain (CD247). No mutations were found in the CD247 gene that encodes the homodimeric ζ protein. The diminished presence of CD247 and increased numbers of γδ T cells were also observed in thymocyte populations obtained from three other thymoma patients. Thus, our findings describe a novel type of a clinically relevant acquired T cell immunodeficiency in thymoma patients that is distinct from Good's syndrome. Its characteristics are an accumulation of CD247-deficient, hyporresponsive naive γδ and αß T cells and an increased susceptibility to infections.


Subject(s)
CD3 Complex/genetics , Gene Expression Regulation , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Thymoma/genetics , Thymoma/immunology , Adult , Antigens, Protozoan/immunology , CD3 Complex/metabolism , Cytokines/biosynthesis , Exons , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/diagnosis , Immunologic Memory , Immunophenotyping , Leishmania/immunology , Lymphocyte Count , Male , Phenotype , Primary Immunodeficiency Diseases , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sequence Analysis, DNA , Thymoma/complications , Thymoma/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL